
SnarkPack: Practical SNARK Aggregation

Nicolas Gailly1, Mary Maller2, and Anca Nitulescu1

1 Protocol Labs.
2 Ethereum Fondation.

{nikkolasg, anca}@protocol.ai, mary.maller@ethereum.org

Abstract. Zero-knowledge SNARKs (zk-SNARKs) are non-interactive
proof systems with short and efficiently verifiable proofs that do not re-
veal anything more than the correctness of the statement. zk-SNARKs
are widely used in decentralised systems to address privacy and scalabil-
ity concerns.

A major drawback of such proof systems in practice is the requirement
to run a trusted setup for the public parameters. Moreover, these param-
eters set an upper bound to the size of the computations or statements
to be proven, which results in new scalability problems.

We design and implement SnarkPack, a new argument that further re-
duces the size of SNARK proofs by means of aggregation. Our goal is to
provide an off-the-shelf solution that is practical in the following sense:
(1) it is compatible with existing deployed SNARK systems, (2) it does
not require any extra trusted setup.

SnarkPack is designed to work with Groth16 scheme and has logarithmic
size proofs and a verifier that runs in logarithmic time in the number of
proofs to be aggregated. Most importantly, SnarkPack reuses the public
parameters from Groth16 system.

SnarkPack can aggregate 8192 proofs in 8.7s and verify them in 163ms,
yielding a verification mechanism that is exponentially faster than other
solutions. SnarkPack can be used in blockchain applications that rely on
many SNARK proofs such as Proof-of-Space or roll-up solutions.

1 Introduction

Arguments of Knowledge. Decentralised systems make extensive use of pro-
tocols that enable a prover to post a statement together with a short proof, such
that any verifier can publicly check that the statement (e.g., correctness of a
computation, claims of storage etc.) is true while expending fewer resources, e.g.
less time than would be required to re-execute the computation.

SNARKs are such proofs that allow one party to demonstrate knowledge of a
satisfying witness to some NP statement and have verification time and proof size
independent of the size of this witness. If these proofs also conceal anything else
about the witness we refer to them as zk-SNARKs. In the last decade, there has
been a series of works on constructing SNARKs [BCI+13, GGPR13, PHGR13,
BCTV14, Gro16] with constant-size proofs that rely on trusted setups.



SNARKs are becoming very popular in real-world applications such as del-
egated computation or blockchain systems: as examples of early practical use
case, Zerocash [BCG+14] showed how to use zk-SNARKs in distributed ledgers
to achieve payment systems with strong privacy guarantees. The Zerocash pro-
tocol, with some modifications, is now commercially deployed in several cryp-
tocurrencies, e.g. Zcash.

More recent zk-SNARK use cases are Aztec and zkSync, two projects boost-
ing the scalability and privacy of Ethereum smart contracts3. Another example
of SNARK application is the Filecoin System4 that implements a decentralized
storage solution for the internet.

The rapid and massive adoption of SNARK schemes has created new scala-
bility challenges for blockchain systems: the generation of trusted setups requires
complicated ceremonies, proving large statements has significant overhead, and
verifying multiple proofs is expensive even with batching.

Trusted Setup Ceremony. All the constant-size zk-SNARK schemes have a com-
mon major disadvantage in practice: they rely on some public parameters, the
structured reference string (SRS), that are generated by a trusted setup. In the-
ory, this setup is run by a trusted third party, while in practice, such a string
can be generated by a so called ”ceremony”, a multi-party computation between
participants who are believed not to collude as shown in [ABL+19, BGM17,
BCG+15]. Generating such a trusted setup is a cumbersome task. These cere-
monies are expensive in terms of resources, they must follow specific rules, and
they are generally hard to organise: hundreds of participants with powerful ma-
chines need to join efforts to perform a multi-party computation over multiple
months.

Groth16. The construction by Groth [Gro16] is the state-of-the-art for pairing-
based zk-SNARKs. Groth16 requires the computation to be expressed as an
arithmetic circuit and relies on some trusted setup to prove the circuit satisfi-
ability. Due to its short proof size (3 group elements) and verifier’s efficiency,
Groth16 has become a de facto standard in blockchain projects. This results in a
great number of available implementations, code auditing, and multiple trusted
setup ceremonies run by independent institutions.

Motivation. Importantly, the trusted setup in SNARK schemes sets an upper
bound on the size of computations that can be proven (number of constraints in
the circuit description). Because modern applications have an increased demand
for the size of circuits, Groth16 is starting to face scalability problems. A simple
solution would be to split the computation in different pieces and prove them
independently in smaller circuits, but this increases the number of proofs to be
added to a single statement and the verification time.

We address this problem by demonstrating a method to reduce the overhead
in communication and verification time for multiple proofs without the need of
further larger trusted setup ceremonies.

3 Aztec, https://zk.money; zksync, https://zksync.io; https://ethereum.org
4 Filecoin, https://filecoin.io

2

https://zk.money
https://zksync.io
https://ethereum.org
https://filecoin.io


Filecoin System. One example is Filecoin [Lab18] proof-of-space blockchain. To
onboard storage in the network, Filecoin miners post a Groth16 proof that they
correctly computed a Proof-of-Space [Fis19]. Each proof guarantees that the
miner correctly “reserves” 32GB of storage to the network and consists of 10
different SNARKs. The chain currently processes a large number of proofs each
day: approximately 500,000 Groth16 proofs, representing 15 PiB of storage.

Contribution. We explore reducing proof size and verifier time for SNARKs
even further by examining techniques to aggregate proofs without the require-
ment for additional trusted setups.

We design SnarkPack, an argument that allows to aggregate n Groth16 zk-
SNARKs with a O(log n) proof size and verifier time. Our scheme is based on
a trusted setup that can be constructed from two different existing ceremonies
(e.g. the ”powers of tau” for Zcash [Zca18] and Filecoin [Fil20]).

Being able to rely on the security of well-known trusted setups for which the
ceremonies have been largely publicly advertised is a great practical advantage
and makes SnarkPack immediately useful in real-world applications.

Our techniques are generic and can also apply to other pairing-based SNARKs.
The roadmap is similar, since all such SNARK constructions require the genera-
tion of ”powers of tau” for the setup ceremony and then have a few pairing check
equations in the verification algorithm. However, we choose to focus on Groth16
proofs and tailor optimisations for this case, since it is the most popular scheme
among practitioners. Therefore, SnarkPack is the first practical system that can
be used in blockchain applications to reduce the on-chain work by employing
verifiable outsourcing to process a large number of proofs off-chain. This applies
broadly to any system that needs to delegate batches of state updates to an
untrusted server.

Related Work. Prior works have built similar schemes for recursion or ag-
gregation of proofs, but they all have critical shortcomings when it comes to
implementing them in real-world systems.

Bünz et al. [BMM+19] presented a scheme for aggregating Groth16 proofs
that requires a specific trusted setup to construct the structured reference string
(SRS) necessary to verify such aggregated proofs. Our result is conceptually
similar to that of Bünz et al. while benefiting from many optimizations. We
focus specifically on aggregating proofs generated using the same Groth16 SRS
which is the common use case, as opposed to the generic result in [BMM+19] that
allows aggregation of proofs from different SRSes. Our result can be extended
to support this latter case as well.

While our techniques built on top of inner pairing arguments with logarithmic
verifier previously introduced by [DRZ20], we build new such schemes that avoid
the need of a different trusted setup ceremony (other than the existing SNARK
setup). Our approach for aggregation is preferable to [BMM+19] in practical use
cases.

Other approaches to aggregation rely on recursive composition. In more de-
tail, [BCG+20] propose a new SNARK for the circuit that contains n copies
of the Groth16 verifier’s circuit. However, constructing arithmetic circuits for

3



pairings is expensive (e.g., computing a pairing on the BLS12-377 curve requires
≈ 15000 constraints as shown in [BCG+20]). The advantage of using such ex-
pensive schemes for aggregation is their transparent setup.

However, the costs are significant compared with our scheme: they compute
FFTs, which require time O(n log n), the verifier performs O(n) cryptographic
operations as opposed to O(n) field operations in our scheme and they require
special cycles of curves.

SnarkPack has the best of both worlds: it benefits from the power of struc-
tured public parameters to avoid expensive computations, while it does not re-
quire additional trust assumptions, as it relies on already available trusted setup
transcripts for the underlying Groth16 scheme.

Technical Overview. To explain how SnarkPack works, we need to consider
3 multiplicative cyclic groups G1,G2,GT of order p equipped with the bilinear
map, also called ”pairing” e : G1 × G2 → GT such that ∀a, b ∈ Zp : e(ga, hb) =
e(g, h)ab.

Groth16 proofs π = (A,B,C) for statements u = a consist of 3 group ele-
ments A,C ∈ G1 and B ∈ G2. The high-level idea of Groth16 aggregation is
quite simple: Since Groth16 verification consists in checking a pairing equation
between the proof elements π = (A,B,C), instead of checking that n different
pairing equations are simultaneously satisfied, it is sufficient to prove that only
one inner pairing product of a random linear combination of these initial equa-
tions defined by a verifier’s random challenge r ∈ Zp holds. In a bit more detail,
Groth16 verification asks to check an equation of the type e(Ai, Bi) = Yi·e(Ci, D)
for Yi ∈ GT , D ∈ G2 where Yi is a value computed from each statement ui = ai,
D ∈ G2 is a fixed verification key and πi = (Ai, Bi, Ci)

n−1
i=0 are proof triples.

The aggregation will instead check a single randomized equation:

n−1∏
i=0

e(Ai, Bi)
ri =

n−1∏
i=0

Y r
i

i · e
( n−1∏
i=0

Cr
i

i , D
)
.

We denote by Y ′prod :=
∏n−1
i=0 Y

ri

i so this can be rewritten as:

ZAB = Y ′prod · e(ZC , D), where ZAB :=

n−1∏
i=0

e(Ai, Bi)
ri and ZC :=

n−1∏
i=0

Cr
i

i .

What is left after checking that this unified equation holds is to verify that the
elements ZAB , ZC are consistent with the initial proof triples in the sense that
they compute the required inner product. This is done by applying an argument
that proves two different inner pairing product relations:

– TIPP: the target inner pairing product takes some initial committed vectors
A ∈ G1,B ∈ G2 and shows that ZAB =

∏n−1
i=0 e(Ai, Bi);

– MIPP: the multi-exponentiation inner product takes a committed vector
C ∈ G1 and a vector r ∈ Zp and shows that ZC =

∏n−1
i=0 C

ri

i .

4



New Commitment Schemes. The key ingredient for SnarkPack is the efficient
realisation of the two specialised inner pairing product arguments following the
ideas initially proposed by [DRZ20] and generalised to other inner products by
[BMM+19]. These require a special commitment scheme that allows a party to
commit to vectors of group elements in both source groups G1 and G2 with
further homomorphic and collapsing properties.

We therefore introduce two new Pair Group Commitment schemes described
in Section 3 that enable to commit to vectors A,C ∈ G1,B ∈ G2. Our com-
mitments are doubly-homomorphic with respect to the message space and key
space and they have a collapsing property. Both schemes have constant-size com-
mitments and are proved to be binding based on assumptions that hold in the
generic group model. Our second scheme has the advantage that it allows a party
to commit to two vectors from two different groups with no size overhead. We
think these schemes can be of independent interest in protocols that need to
commit to source-group elements.

Reusing Groth16 Trusted Setup. The advantage of our commitment schemes
is that they can reuse existing public setups for Groth16 to generate their struc-
tured commitment keys.

The public parameters required for the generation of the commitment keys
can be extracted from two compatible copies of Groth16 SRS.

For a given bilinear group (p,G1,G2,GT ), Groth16 SRS consist (among other
elements) of consecutive powers of some random evaluation point τ in both

groups G1 and G2 : {gτ i}i ∈ Gd1, {hτ
i}i ∈ Gd2. We will call these ”powers of

tau”.

The generation of SnarkPack public parameters (the commitment keys) comes
naturally from two ceremonies for Groth16 setup (also known as ”powers of
tau”) for the same generators g and h and different powers a = τ1 and b = τ2:
g, h, gτ1 , . . . , gτ

n
1 , hτ1 , . . . , hτ

n
1 , one up to n and the other gτ2 . . . , gτ

m
2 , hτ2 , . . . , hτ

m
2

up to m ≥ n.

Our assumptions rely on the fact that cross powers (e.g. gτ1τ2) are not known
to the prover. Since the two SRSes we use are the result of two independent
ceremonies, it is unlikely that such terms can be learned since τ1 and τ2 were
destroyed after the SRS generation.

In practice, we fortunately have at least two ceremonies that satisfy the
requirements for same group generators and different powers: Such values can
be obtained from the powers of tau transcript of Zcash [Zca18] and Filecoin
[Lab18]. The SRS created goes up to n = 219 for τ1 and m = 2127 for τ2.

Implementation. In Section 6 we provide benchmarks and optimisation details
for our implementation in Rust, and evaluate its efficiency against batching.
SnarkPack is exponentially more efficient than aggregation via batching: it takes
163ms to verify an aggregated proof for 8192 proofs (including unserialization)
versus 621ms when doing batch verification. The former is of 40kB in size. The
aggregator can aggregate 8192 proofs in 8.7s.

5



2 Preliminaries

Bilinear Groups. A bilinear group is given by a description gk = (p,G1,G2,GT )
such that

– p is prime, so Zp = F is a field.
– G1 = 〈g〉,G2 = 〈h〉 are cyclic groups of prime order p.
– e : G1×G2 → GT is a bilinear asymmetric map (pairing), which means that
∀a, b ∈ Zp : e(ga, hb) = e(g, h)ab.

Vectors. For n-dimensional vectors a ∈ Znp ,A ∈ Gn1 ,B ∈ Gn2 , we denote the i-th
entry by ai ∈ Zp, Ai ∈ G1, Bi ∈ G2 respectively. Let A‖A′ = (A0, . . . , An−1,
A′0, . . . , A

′
n−1) be the concatenation of vectors A,A′ ∈ Gn1 . We write A[:`] =

(A0, . . . , A`−1) ∈ G`1 and A[`:] = (A`, . . . , An−1) ∈ Gn−`1 to denote slices of
vectors A ∈ Gn1 for 0 ≤ ` < n− 1.

We write group operations as multiplications. We define:

– Ax = (Ax0 , . . . , A
x
n−1) ∈ Gn1 for x ∈ Zp and a vector A ∈ Gn1 .

– Ax = (Ax0
0 , . . . , A

xn−1

n−1 ) ∈ Gn1 for vectors x ∈ Znp ,A ∈ Gn1 .

– A ∗ x =
∏n−1
i=0 A

xi
i for vectors x ∈ Znp ,A ∈ Gn1 .

– A ∗B :=
∏n−1
i=0 e(Ai, Bi) for group vectors A ∈ Gn1 ,B ∈ Gn2 .

– A ◦A′ := (A0A
′
0, . . . , An−1A

′
n−1) for vectors A,A′ ∈ Gn1 .

Relations. We use the notation R to denote an efficiently decidable binary rela-
tion. For pairs (u,w) ∈ R we call u the statement and w the witness. We write
R = {(u;w) : p(u,w)} to describe an NP relation.

Common and Structured Reference String. The common reference string (CRS)
model, introduced by Damg̊ard [Dam00], captures the assumption that a trusted
setup exists. Schemes proven secure in the CRS model are secure given that
the setup was performed correctly. We will use the terminology “Structured
Reference String” (SRS) since all our crs strings are structured.

Background on Groth16. We recall here some necessary elements from [Gro16]
construction. The definition of zk-SNARKs is given in Appendix A.1. A detailed
description of the Groth16 protocol can be found in Appendix C. The main
highlights follow:
Setup. For a given bilinear group gk = (p,G1,G2,GT ), the SRS contains, among
other elements, consecutive powers of some random evaluation point s in both
groups G1,G2 : {gsi}d−1i=0 ∈ Gd1, and {hsi}d−1i=0 ∈ Gd2.
Prove. A Groth16 proof π for a statement u := a = {aj}tj=0 (with a0 = 1) and
a witness w := {aj}mj=t+1 consists in 3 group elements π = (A,B,C), where
A,C ∈ G1 and B ∈ G2.
Verify. For the verification algorithm, Groth16 uses only a part of its structured
reference string which we will call verification key vk:

vk :=
(
P = gα, Q = hβ ,

{
Sj = g

βvj(s)+αwj(s)+yj(s)
γ

}t
j=0

, H = hγ , D = hδ
)
.

6



Groth16 verification consists in checking a pairing equation between the proof
elements π = (A,B,C) using the verification key:

e(A,B) = e(gα, hβ) · e(
t∏

j=0

S
aj
j , h

γ) · e(C, hδ).

Assumptions. We introduce two new assumptions necessary to prove our schemes
are secure. Formal proofs that these assumptions hold in the Generic Group
Model can be found in Appendix B.1.

Assumption 1 (ASSGP) The (q,m)-Auxiliary Structured Single Group Pair-
ing assumption holds for the bilinear group generator G if for all PPT ad-
versaries A we have, on the probability space gk = (p,G1,G2,GT ) ← G(1λ),
g←$G1, h←$G2 and a, b←$Zp the following probability is negligible in λ:

Pr

 (A0, . . . , Aq−1) 6= 1G1

∧
∏q−1
i=0 e(Ai, h

ai) = 1GT

∧
∏q−1
i=0 e(Ai, h

bi) = 1GT

g←$G1, h←$G2, a, b←$Zp
σ = (ga

i

, gb
i

, ha
i

, hb
i

)2q−1i=0

aux← (ga
i

, gb
i

, ha
i

, hb
i

)mi=2q

A← A(gk, σ, aux)

 .
Assumption 2 (ASDGP) The (q,m)-ASDGP assumption holds for the bilin-
ear group generator G if for all PPT adversaries A we have, on the probability
space gk = (p,G1,G2,GT ) ← G(1λ), g←$G1, h←$G2 and a, b←$Zp the fol-
lowing probability is negligible in λ:

Pr


(A 6= 1G1

∨ B 6= 1G2
) ∧∏q−1

i=0 e(Ai, h
ai)
∏2q−1
i=q e(ga

i

, Bi)=1GT

∧∏q−1
i=0 e(Ai, h

bi)
∏2q−1
i=q e(gb

i

, Bi)=1GT

g←$G1, h←$G2, a, b←$Zp
σ = (ga

i

, gb
i

, ha
i

, hb
i

)

aux=(ga
i

, gb
i

, ha
i

, hb
i

)m2q
(A,B)← A(gk, σ, aux)


We can similarly define the dual assumptions, by swapping G1 and G2 in the

definition above.

3 Pair Group Commitment Schemes

In this section we introduce a new commitment scheme to group elements in a
bilinear group. In order to use them in our aggregation protocol, we require the
following properties from the commitment schemes:

• Computationally Binding Commitment: as per Definition 4
• Constant Size Commitment: the commitment value is independent of the

length of the committed vector
• Doubly-Homomorphic: homomorphic both in the message space and in the

key space

CM(ck1 + ck2;M1 +M2) = CM(ck1;M1) + CM(ck1;M2)+

CM(ck2;M1) + CM(ck2;M2).

7



• Collapsing Property: double-homomorphism implies a distributive property
between keys and messages that allows multiple messages to be collapsed
via a deterministic function Collapse defined as follows:

Collapse

CM

ck1‖ck′1
ck2‖ck′2
ck3

M1‖M1

M2‖M2

M3

 = CM

ck1 + ck′1
ck2 + ck′2

ck3

M1

M2

M3


There are a few candidates for such schemes, but none of them are adapted for

fulfilling our goals. The commitment schemes proposed by [DRZ20, BMM+19]
work under some new assumption that asks for the commitment keys to be
structured in a specific way. In order to use this commitment, we need to run
a new trusted setup to generate a commitment key. It would be impossible to
consider existing Groth16 setups, since those give away elements that break the
binding of the commitment scheme.

Our main goal is to find a commitment scheme that uses a structured refer-
ence string similar to the one from many popular SNARK implementations, e.g.
Groth16.

The commitment scheme proposed by Lai et al. [LMR19] is likely to satisfy
these properties, but it is shown to be binding only for unstructured random pub-
lic parameters; however, in order to obtain a log-time verification Inner Pairing
Product Argument scheme, we would need some structure for the commitment
keys. We adapt the commitments from [LMR19] to work with structured keys
and prove the binding property for an adversary that has access to these struc-
tured public parameters under our new assumptions ASSGP and ASDGP.

To optimise the commitment sizes, we define two different variants of the
commitment scheme: one that takes a vector of elements of a single group G1,
and one that takes two vectors of points in G1 and G2, respectively.

Single group version CMs. This version is useful for the MIPP relation. It
takes one vector A ∈ Gn1 and outputs two target group elements (TA, UA) ∈ G2

T

as a commitment.

KGs(1
λ)→ cks = (v1,v2). Sample a, b←$Zp and set

v1 = (h, ha, . . . , ha
n−1

), v2 = (h, hb, . . . , hb
n−1

).
CMs(cks = (v1,v2),A = (A0, . . . , An−1))→ (TA, UA):

1. TA = A ∗ v1 = e(A0, h) · e(A1, h
a) . . . e(An−1, h

an−1

)

2. UA = A ∗ v2 = e(A0, h) · e(A1, h
b) . . . e(An−1, h

bn−1

)

Lemma 1. Under the hardness of (n,m)-ASSGP assumption for m > 2n, this
commitment scheme is computationally binding as per Definition 4.

Proof. Suppose there exists a PPT adversary A that breaks the binding property
of the commitment scheme. Then, given the output ((TA, UA); A,A∗) of the
adversary A, we have that (TA, UA) = (TA∗ , UA∗):

e(A0, h)e(A1, h
a) . . . e(An−1, h

an−1

) = e(A∗0, h)e(A∗1, h
a) . . . e(A∗n−1, h

an−1

)

e(A0, h)e(A1, h
b) . . . e(An−1, h

bn−1

) = e(A∗0, h)e(A∗1, h
b) . . . e(A∗n−1, h

bn−1

)

8



By applying the homomorphic properties of the commitment scheme to these
equations we get:

e(A0/A
∗
0, h)e(A1/A

∗
1, h

a) . . . e(An−1/A
∗
n−1, h

an−1

) = 1

e(A0/A
∗
0, h)e(A1/A

∗
1, h

b) . . . e(An−1/A
∗
n−1, h

bn−1

) = 1

where the vector (A0/A
∗
0, A1/A

∗
1, . . . An−1/A

∗
n−1) 6= 1G1 . This breaks the (n,m)-

ASSGP assumption.

Double group version CMd. This version is useful for the TIPP relation.
It takes two vectors A ∈ Gn1 ,B ∈ Gn2 and outputs two target group elements
(TAB , UAB) ∈ G2

T as a commitment.

KGd(1
λ)→ ckd = (v1,v2,w1,w2) : Sample a, b←$Zp and set

v1 = (h, ha, . . . , ha
n−1

), w1 = (ga
n

, . . . , ga
2n−1

),

v2 = (h, hb, . . . , hb
n−1

), w2 = (gb
n

, . . . , gb
2n−1

).
CMd(ckd,A,B)→ (TAB , UAB):

1. TAB = (A ∗ v1)(w1 ∗B)
2. UAB = (A ∗ v2)(w2 ∗B)

Lemma 2. Under the hardness of (n,m)-ASDGP assumption for m > 2n, this
commitment scheme is computationally binding.

Proof. The proof is analogous to the one of Lemma 1. Since the commitment is
homomorphic, breaking the binding is equivalent to finding a non-trivial opening
to 1. Thus it breaks the assumption.

Inner Pairing Product Commitments. It is straightforward to check that the
two versions of pairing commitment schemes CMs and CMd are compatible with
inner product arguments, in the sense that they satisfy all the necessary proper-
ties: constant size, doubly-homomorphic, and the identity is a collapse function
defined Collapseid(C) = C.

Reusing Groth16 SRS. The two commitment schemes have the advantage that
they can reuse two compatible (independent) SNARK setup ceremonies for their
structured keys generation and therefore can be easily deployed without requiring
a new trusted setup.

The SRSes required for the generation of the public commitment keys should
satisfy some properties: We ask for the two ceremonies to use the same ba-
sis/generators in the same bilinear group g ∈ G1, h ∈ G2, but two different
randomnesses a, b,∈ Zp, a 6= b for the exponents. The setups consists of consec-

utive powers {gai , hai}mi=0 and {gbi , hbi}ni=0.
Importantly, even if the two setups have different dimensions m 6= n, this

does not affect the binding of the commitments. The extra elements available
to the adversaries are taken into account in the auxiliary input aux in the two
assumptions, by setting the parameters accordingly.

9



4 MT-IPP Scheme

This new protocol will be used to prove two inner pairing product relations
that are essential to SNARK aggregation: the multiexponentiation inner product
(MIPP) between vectors C and r and the target inner pairing product (TIPP)
between vectors A,B, for vectors A,C ∈ G1 and B ∈ G2.

In order to optimize the aggregation contruction, we design a new protocol
MT-IPP that “fuses” together proofs for MIPP and TIPP relations. The formal
relations Rmipp and Rtipp are stated in Appendix D.1.

We recall the two inner product maps for bilinear group gk = (p,G1,G2,GT , e)
and the combined relation for MT-IPP:

1. Multiexponentiation inner product map Gn1 × Fn → G1: C ∗ r =
∏
Crii

2. Target inner pairing product map Gn1 ×Gn2 → GT : A ∗B :=
∏
e(Ai, Bi)

3. Relation for both MIPP and TIPP:

Rmt :=


(
(TAB , UAB), (TC , UC),

ZAB , ZC , r; A,B,C
) :

(CMs(C), ZC , r; C) ∈ Rmipp

∧
(CMd(A,B), ZAB , r; A,B) ∈ Rtipp


Construction. Our MT-IPP makes black-box use of the two Pair Group Com-
mitments schemes CMs = (KGs,CMs) and CMd = (KGd,CMd) from Section 3
and KZG Polynomial Commitment KZG.PC = (KZG.KG,KZG.CM,KZG.Open,
KZG.Check) from Appendix A.4.
The scheme consists of 3 algorithms: MT-IPP = (MT.Setup,MT.Prove,MT.Verify):

MT.Setup(1λ,Rmt)→ crsmt:

1. Run: cks := (v1,v2)← CMs(1
λ), ckd := (v1,v2,w1,w2)← CMd(1

λ).
2. Set commitment keys for KZG.PC scheme:

ck1v := {ha
i

}n−1i=0 , vk1v := ga ck1w := {ga
i

}2n−1i=0 , vk1w := ha

ck2v := {hb
i

}n−1i=0 , vk2v := gb ck2w := {gb
i

}2n−1i=0 , vk2w := hb

3. Define ckkzg := (ckjσ), vkkzg := (vkjσ) for j = 1, 2; σ = v, w.
4. Fix Hashcom: G4

T → Zp and its description hkcom.
5. Fix Hashx0

: Z2
p ×GT ×G1 → Zp and its description hkx0

.
6. Fix Hash : Zp ×G12

T → Zp and its description hk.
7. Fix Hashz : Zp ×G2

2 ×G2
1 → Zp and its description hkz.

8. Set crsmt := (hkcom, hkx0
, hk, hkz, cks, ckd, ckkzg, vkkzg).

MT.Prove(crsmt, (TAB , UAB), (TC , UC), ZAB , ZC , r; A,B,C)→ πmt:

– Loop “split & collapse” for step i
1. n′ = ni−1/2 where n0 = n = 2`

2. If n′ < 1: break
3. Set B′ := Br,w′1 := wr−1

1 ,w′2 := wr−1

2 .
4. Compute L/R inner products:

(ZL)AB = A[n′:] ∗B′[:n′] and (ZR)AB = A[:n′] ∗B′[n′:]

(ZL)C = C
r[:n′]
[n′:] and (ZR)C = C

r[n′:]
[:n′]

10



5. Compute left cross commitments:

(TL, UL)AB = CMd((v1,w
′
1; v2,w

′
2); A[n′:]||0,0||B′[:n′]))

(TL, UL)C = CMs((v1,v2),C[n′:]||0)

6. Compute right cross commitments:

(TR, UR)AB = CMd((v1,w
′
1; v2,w

′
2); 0||A[:n′],B

′
[n′:]||0)

(TR, UR)C = CMs((v1,v2),0||C[:n′])

7. Compute hash to the vector commitments

hcom = Hashcom((TAB , UAB), (TC , UC)).

8. Compute challenge xi: x0 = Hashx0
(r, hcom, ZAB , ZC).

xi = Hash (xi−1; (ZL, ZR)AB , (ZL, ZR)C , (TL, UL;TR, UR)AB ,

(TL, UL;TR, UR)C)

9. Compute Hadamard products on vectors

A := A[:n′] ◦Axi

[n′:], B′ := B′[:n′] ◦B′
x−1
i

[n′:], C := C[:n′] ◦Cxi

[n′:]

10. Compute Hadamard products on keys v1,v2 and w′1,w
′
2:

(v1,v2) := (v1[:n′] ◦ v1
x−1

[n′:],v2[:n′] ◦ v2
x−1

[n′:])

(w′1,w
′
2) := (w′1[:n′] ◦w′

x
1[n′:]

,w′2[:n′] ◦w′
x
2[n′:]

)

11. Set ni = n′

– Compute proofs (πvj , πwj
)j=1,2 of correctness of final commitment keys

(v1, v2) ∈ G2
2; (w′1, w

′
2) ∈ G2

1 (This step is detailed in Appendix E):

1. Define fv(X) =
∏`−1
j=0(1 + x−1`−jX

2j ) and

fw(X) = Xn
∏`−1
j=0

(
1 + x`−jr

−2jX2j
)

2. Draw challenge z = Hashz(x`, v1, v2, w1, w2)
3. Prove that v1 = gfv(a), v2 = hfv(a), w1 = gfw(a), w2 = hfw(b) are

KZG commitments of fv(X) by opening evaluations in z

πvj ← KZG.Open(ckjv; vj , z, fv(z); fv(X)) for j=1,2

πwj
← KZG.Open(ckjw;wj , z, fw(z); fw(X)) for j=1,2

– Given the final elements A,B′, C and (v1, v2), (w′1, w
′
2) at the end of the

loop after split & collapsing A,B′ = Br,C and v1,v2,w
′
1,w

′
2, set

πmt =
(
A,B′, C, (ZL,ZR)AB , (ZL,ZR)C , (TL,UL)AB , (TR,UR)AB ,

(TL,UL)C , (TR,UR)C , (v1, v2), (w′1, w
′
2), (πvj , πwj )j=1,2

)

11



MT.Verify(crsmt, statement;πmt)→ b:

1. Parse statement = ((TAB , UAB), (TC , UC), ZAB , ZC , r)
2. Compute hash to the commitments

hcom = Hashcom((TAB , UAB), (TC , UC))

3. Reconstruct challenges {xi}`i=1:

x0 = Hashx0
(r, hcom, ZAB , ZC)

xi = Hash
(
xi−1, (ZL[i],ZR[i])AB , (ZL[i],ZR[i])C ,

(TL[i],TR[i],UL[i],UR[i])AB , (TL[i],TR[i],UL[i],UR[i])C
)

4. Construct products and commitments recursively, i = 1→ `:

– (Zi)AB = ZL[i]xi

AB · (Zi−1)AB · ZR[i]
x−1
i

AB

– (Ti)AB = TL[i]xi

AB · (Ti−1)AB ·TR[i]
x−1
i

AB

– (Ui)AB = UL[i]xi

AB · (Ui−1)AB ·UR[i]
x−1
i

AB

where (Z0)AB = ZAB , (T0))AB = TAB , (U0))AB = UAB

– (Zi)C = ZL[i]xi

C · (Zi−1)C · ZR[i]
x−1
i

C

– (Ti)C = TL[i]xi

C · (Ti−1)C ·TR[i]
x−1
i

C ,

– (Ui)C = UL[i]xi

C · (Ui−1)C ·UR[i]
x−1
i

C

where (Z0)C = ZC , (T0)C = TC , (U0)C = UC
5. Compute final vector value from r: r′ =

∏`−1
i=0(1 + x−1`−ir

2i)
6. Verify final values (T`, U`, Z`)AB , (T`, U`, Z`)C :

(a) (Z`)AB
?
= e(A,B′)

(b) (Z`)C
?
= Cr

′

(c) Check if (T`)AB
?
= e(A, v1)e(w′1, B

′) and (U`)AB
?
= e(A, v2)e(w′2, B

′)

(d) Check if (T`)C
?
= e(C, v1) and (U`)C

?
= e(C, v2)

7. Verify final commitment keys v1, v2, w
′
1, w

′
2 as detailed in Appendix E

(a) Reconstruct KZG challenge point: z = Hashz(x`, v1, v2, w
′
1, w

′
2)

(b) Reconstruct commitment polynomials: fv(X) =
∏`−1
j=0

(
1 + x−1`−jX

2j
)
,

fw(X) = Xn
∏`−1
j=0

(
1 + x`−jr

−2jX2j
)

(c) Run verification for openings of evaluations in z for j = 1, 2:

b1j ← KZG.Check(vkjv; vj , z, fv(z);πvj ),

b2j ← KZG.Check(vkjw;wj , z, fw(z);πwj )

Theorem 3. If CMs,CMd are computationally binding commitments as per Def-
inition 4, the hash functions are modelled as random oracles, and KZG.PC has
computational knowledge binding as per Definition 6, then the protocol MT-IPP
has completeness and computational knowledge soundness (Definition 1) against
algebraic adversaries in the random oracle model.

12



Proof. An adversary breaking soundness of the MT-IPP scheme, either convinces
the verifier of incorrect final keys v1, v2, w

′
1, w

′
2 or breaks computational binding

of one of CMs,CMd.
Since both CMs,CMd are computationally binding, what is left to show is the

completeness and soundness of the proof of correctness of the final commitment
keys. The validity of the final commitment keys is shown using the KZG.PC
scheme. The complete analysis for this step follows in Appendix E.

5 SnarkPack: Aggregation Scheme

In this section we describe SnarkPack, our new efficient protocol for Groth16
aggregation. The relation proven by SnarkPack can be stated as follows:

Relation for Aggregation. More formally, we introduce the relation for ag-
gregating n Groth16 proof vectors A,C ∈ Gn1 ,B ∈ Gn2 with respect to a fixed
verification key vk:

RAGG :=
{

(u = {ai}n−1i=0 ;π = {(A,B,C)}) : Verify(vk, ui, πi) = 1, ∀i
}

where ui = ai = {ai,j}tj=0, πi = (Ai, Bi, Ci) ∈ G1 ×G2 ×G1 for i = 0, . . . n− 1.

The resulting argument for aggregation consists in 3 algorithms SnarkPack =
(SP.Setup,SP.Prove,SP.Verify) that work as follows:

SP.Setup(1λ,RAGG)→ (crsagg, vkagg)

1. Generate commitment key for CMd:

ckd = (v1,v2,w1,w2)← CMd.KG(1λ)

2. Set commitment key for CMs : cks = (v1,v2)
3. Call crsmt ← MT.Setup(1λ,Rmt)
4. Fix hash function Hashr : Zt·np ×G4

T → Zp given by its description hkr
5. Set aggregation public parameters: crsagg = (vk, crsmt, hkr)

SP.Prove(crsagg,u, π = (A,B,C))→ πagg

1. Parse proving key crsagg := (vk, crsmt, cks, ckd, hk)
2. Parse cks = (v1,v2), ckd = (v1,v2,w1,w2)
3. Commit to A and B:

CMd((v1,v2,w1,w2); A,B) = (TAB , UAB)

4. Commit to C : CMs((v1,v2); C) = (TC , UC)
5. Hash these commitments hcom = Hashcom((TAB , UAB), (TC , UC))
6. Derive random challenge r = Hashr(u, hcom) and set r = {ri}n−1i=0

7. Compute ZAB = Ar ∗B
8. Compute ZC = Cr =

∏n−1
i=0 C

ri
i .

13



9. Run MT proof for inner products ZAB , ZC , r:

πmt = MT.Prove(crsmt, (TAB , UAB), (TC , UC), ZAB , ZC , r; A,B,C, r)

10. Set πagg = ((TAB , UAB), (TC , UC), ZAB , ZC , πmt)

SP.Verify(vkagg,u, πagg)→ b

1. Parse SNARK instances u = {ai,j}i=0,...n−1;j=0,...t

2. Parse verification key vkagg := (vk, crsmt, hk)
3. Hash the commitments hcom = Hashcom((TAB , UAB), (TC , UC))
4. Parse vk :=

(
P = gα, Q = hβ , {Sj}tj=0, H = hγ , D = hδ

)
5. Derive random challenge r = Hashr(u, hcom)
6. Set statement = (u, (TAB , UAB), (TC , UC), ZAB , ZC , r)
7. Check MT proof b1 ← MT.Verify(crsmt, statement, πmt)

8. Compute ZSj
= S

∑n−1
i=0 aijr

i

j for all j = 0 . . . t
9. Check Groth16 final equation to the decision bit b2:

ZAB
?
= e(P

∑n−1
i=0 ri , Q)e(

t∏
j=0

ZSj
, H)e(ZC , D)

10. Set decision bit b = b1 ∧ b2

6 Implementation

SnarkPack is implemented in Rust and the code is publicly available at the feat-
ipp2 branch [Fil21] of the bellperson repository [Fil18a]. The implementation
uses the paired [Fil18b] library on the BLS12-381 curve. All proofs to be aggre-
gated are Groth16 proofs with 350 public inputs (instances). All benchmarks are
done on a 32 cores / 64 threads machine with AMD Ryzen Threadripper CPUs.
Parallelism: It is important to note that the protocol allows for some parallel
operations and our implementation makes use of that. Therefore, all benchmarks
presented here can change depending on the degree of parallelism of the machine.
Trusted Setup: We created a condensed version of the SRS required for our
protocol from the powers of tau transcript of both Zcash [Zca18] and Filecoin
[Lab18]. The code to assemble the SRS from two powers of tau can be found at
[nik21]. The SRS created allows the aggregation of up to 219 proofs.
Field elements compression: The proof requires many pairing operations and
multiplications in the target group which employ arithmetic over the finite field
Fp12 . Using algorithms derived from RELIC library [AGM+], we implemented
compression of these field elements that still allows some computations without
decompression. This led to a 40% reduction in proof size.
Compressing pairing checks: A further performance gain in our SnarkPack is
given by the verification batch which applies to the pairing checks from MT-IPP
verification: we scale each pairing check of the form e(A,B)e(C,D)... = T
with a random exponent when verifying so we can compress multiple such

14



Fig. 1. Aggregation Time and Proof size.

checks into one. This randomized checking technique is borrowed from the Zcash
specs [HBHW21]. Specifically, we have a list P of length n of pairing checks of the
form e(A,B)e(C,D)... = T . To compute a pairing we need to apply two steps:
the Miller Loop (ML) and the Final Exponentiation (FE). We take advantage
of the homomorphic properties of these two operations to improve the verifica-
tion time by checking many pairing equations at once. The verifier performs the
following steps to verify all checks in a compressed manner:

1. Choose n randoms scalars ri with r0 = 1
2. Randomize each pairing check Pi for i > 1:

e(Arii , Bi)e(C
ri
i , Di) · · · = T ri

3. Compute the Miller Loop (ML) on the left side of each pairing check:

mi = ML((Arii , Bi)(C
ri
i , Di), . . . )

4. Multiply all results together and apply the Final Exponentiation (FE):

FE(
∏
i

mi) =
∏
i

T rii

Proof Size. The proof size in Fig. 1 compares the size of n proofs versus the
size of one aggregated proof. The figure shows that the break-even point where
aggregation takes less space than batching occurs around 150 proofs. At 128
proofs, the size of an aggregated proof is 23kB, versus 24kB for individual proofs.

Aggregation time. Fig. 1 shows the time taken by the aggregator (prover) to
create an aggregated proof. SnarkPack can aggregate 1024 proofs in 1.4s. The
prover is required to compute a logarithmic number of multi-exponentiations
and expensive pairing products. Our implementation perform these in parallel
and in batches (batching Miller Loop operations).

Verification time. Fig. 2 shows the comparison between the verification of an
aggregated proof and other batching techniques described in the Zcash protocol
[HBHW21]. Verifying Groth16 proofs in batches is what is commonly used in

15



Fig. 2. Verifcation time: Aggregation vs Batching.

Zcash as well as Filecoin to get a sublinear verification time. The graph shows
that batching is more efficient when verifying fewer than 32 Groth16 proofs but
that aggregation becomes exponentially faster after that point. SnarkPack scales
logarithmically and can verify 8192 proofs in 163ms, including unserialization.
Note that the verification algorithm is linear in terms of the public inputs. In
our case, 350 public inputs per proof is small enough to barely count for the
total verification time.

Acknowledgements. We would like to thank Benedikt Bunz, Pratyush Mishra,
and Psi Vesely for valuable discussions on this work, as well as Ben Fisch and
Nicola Greco for the initial intuition of using inner pairing product proofs for
aggregating Filecoin SNARK-based proofs. We are also grateful to dignifiedquire
for his contributions to the Rust codebase.

References

ABL+19. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, Janno Siim, and
Michal Zajac. UC-secure CRS generation for SNARKs. pages 99–117,
2019.

AGM+. D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao.
RELIC is an Efficient LIbrary for Cryptography. https://github.com/

relic-toolkit/relic.
BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,

Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from Bitcoin. Cryptology ePrint Archive, Report 2014/349,
2014. https://eprint.iacr.org/2014/349.

BCG+15. Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and
Madars Virza. Secure sampling of public parameters for succinct zero
knowledge proofs. pages 287–304, 2015.

BCG+20. Sean Bowe, A. Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
H. Wu. Zexe: Enabling decentralized private computation. 2020 IEEE
Symposium on Security and Privacy (SP), pages 947–964, 2020.

16

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2014/349


BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth. Succinct non-interactive arguments via linear interactive proofs.
pages 315–333, 2013.

BCTV14. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-
cinct non-interactive zero knowledge for a von neumann architecture. pages
781–796, 2014.

BGM17. Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation
for zk-SNARK parameters in the random beacon model. Cryptology ePrint
Archive, Report 2017/1050, 2017. https://eprint.iacr.org/2017/1050.

BMM+19. Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi
Vesely. Proofs for inner pairing products and applications. Cryptology
ePrint Archive, Report 2019/1177, 2019. https://eprint.iacr.org/2019/
1177.

Dam00. Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string
model. pages 418–430, 2000.

DRZ20. Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis. Updateable inner
product argument with logarithmic verifier and applications. pages 527–
557, 2020.

Fil18a. Filecoin. bellperson, groth16 library, 2018. https://github.com/

filecoin-project/bellperson.
Fil18b. Filecoin. paired: high performance bls12-381 library, 2018. https://

github.com/filecoin-project/paired.
Fil20. Filecoin. Filecoin powers of tau ceremony attestations, 2020. https://

github.com/arielgabizon/perpetualpowersoftau.
Fil21. Filecoin. Groth16 aggregation library, 2021. https://github.com/

filecoin-project/bellperson/tree/feat-ipp2.
Fis19. Ben Fisch. Tight proofs of space and replication, 2019. https://web.

stanford.edu/~bfisch/tight_pos.pdf.
GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.

Quadratic span programs and succinct NIZKs without PCPs. pages 626–
645, 2013.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. pages
305–326, 2016.

HBHW21. Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash
protocol specification, 2021. https://zips.z.cash/protocol/protocol.

pdf.
KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-

mitments to polynomials and their applications. pages 177–194, 2010.
Lab18. Protocol Labs. Filecoin, 2018. https://filecoin.io/filecoin.pdf.
LMR19. Russell W. F. Lai, Giulio Malavolta, and Viktoria Ronge. Succinct argu-

ments for bilinear group arithmetic: Practical structure-preserving cryptog-
raphy. pages 2057–2074, 2019.

nik21. nikkolasg. Tau aggregation for ipp, 2021. https://github.com/nikkolasg/
taupipp.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. pages 238–252, 2013.

Zca18. Zcash. Zcash powers of taus ceremony attestation, 2018. https://github.
com/ZcashFoundation/powersoftau-attestations.

17

https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/1177
https://github.com/filecoin-project/bellperson
https://github.com/filecoin-project/bellperson
https://github.com/filecoin-project/paired
https://github.com/filecoin-project/paired
https://github.com/arielgabizon/perpetualpowersoftau
https://github.com/arielgabizon/perpetualpowersoftau
https://github.com/filecoin-project/bellperson/tree/feat-ipp2
https://github.com/filecoin-project/bellperson/tree/feat-ipp2
https://web.stanford.edu/~bfisch/tight_pos.pdf
https://web.stanford.edu/~bfisch/tight_pos.pdf
https://zips.z.cash/protocol/protocol.pdf
https://zips.z.cash/protocol/protocol.pdf
https://filecoin.io/filecoin.pdf
https://github.com/nikkolasg/taupipp
https://github.com/nikkolasg/taupipp
https://github.com/ZcashFoundation/powersoftau-attestations
https://github.com/ZcashFoundation/powersoftau-attestations


A Cryptographic Primitives

A.1 SNARKs

Let R be an efficiently computable binary relation which consists of pairs of
the form (u,w). A Proof or Argument System for R consists in a triple of PPT
algorithms Π = (Setup,Prove,Verify) defined as follows:

Setup(1λ,R)→ crs: takes a security parameter λ and a binary relation R and
outputs a common (structured) reference string crs.

Prove(crs, u, w)→ π: on input crs, a statement u and the witness w, outputs an
argument π.

Verify(crs, u, π)→ 1/0: on input crs, a statement u, and a proof π, it outputs
either 1 indicating accepting the argument or 0 for rejecting it.

We call Π a Succinct Non-interactive ARgument of Knowledge (SNARK) if
further it is complete, succinct and satisfies Knowledge Soundness (also called
Proof of Knowledge).

Non-black-box Extraction. The notion of Knowledge Soundness requires the ex-
istence of an extractor that can compute a witness whenever the prover A pro-
duces a valid argument. The extractor we defined bellow is non-black-box and
gets full access to the prover’s state, including any random coins. More formally,
a SNARK satisfies the following definition:

Definition 1 (SNARK). Π = (Setup,Prove,Verify) is a SNARK for an NP
language LR with corresponding relation R, if the following properties are sat-
isfied.

Completeness. For all (x,w) ∈ R, the following holds:

Pr

(
Verify(crs, u, π) = 1

crs← Setup(1λ,R)
π ← Prove(crs, u, w)

)
= 1

Knowledge Soundness. For any PPT adversary A, there exists a PPT ex-
tractor ExtA such that the following probability is negligible in λ:

Pr

(
Verify(crs, u, π) = 1
∧R(u,w) = 0

crs← Setup(1λ,R)
((u, π);w)← A‖χA(crs)

)
= negl(λ).

Succinctness. For any u and w, the length of the proof π is given by |π| =
poly(λ) · polylog(|u|+ |w|).

Zero-Knowledge. A SNARK is zero-knowledge if it does not leak any infor-
mation besides the truth of the statement. More formally:

18



Definition 2 (zk-SNARK). A SNARK for a relation R is a zk-SNARK if
there exists a PPT simulator (S1,S2) such that S1 outputs a simulated common
reference string crs and trapdoor td; S2 takes as input crs, a statement u and td,
and outputs a simulated proof π; and, for all PPT (stateful) adversaries (A1,A2),
for a state st, the following is negligible in λ:∣∣∣∣∣∣Pr

(u,w) ∈ R ∧
A2(π, st) = 1

crs← Setup(1λ)
(u,w, st)← A1(1λ, crs)
π ← Prove(crs, u, w)

 −
Pr

(u,w) ∈ R ∧
A2(π, st) = 1

(crs, td)← S1(1λ)
(u,w, st)← A1(1λ, crs)
π ← S2(crs, td, u)

∣∣∣∣∣∣ = negl(λ).

A.2 Commitment Schemes

A non-interactive commitment scheme allows a sender to create a commitment
to a secret value. It may later open the commitment and reveal the value or
some information about the value in a verifiable manner. More formally:

Definition 3 (Non-Interactive Commitment). A non-interactive commit-
ment scheme is a pair of algorithms Com = (KG,CM):

KG(1λ)→ ck: given a security parameter λ, it generates a commitment public
key ck. This ck implicitly specifies a message space Mck, a commitment space
Cck and (optionally) a randomness space Rck,. This algorithm is run by a
trusted or distributed authority.

CM(ck;m)→ C: given ck and a message m, outputs a commitment C. This
algorithm specifies a function Comck : Mck × Rck → Cck. Given a message
m ∈Mck, the sender (optionally) picks a randomness ρ ∈ Rck and computes
the commitment C = Comck(m, ρ)

For deterministic commitments we simply use the notation C = CM(ck;m) :=
Comck(m), while for randomised ones we write C ←$CM(ck;m) := Comck(m, ρ).

A commitment scheme is asked to satisfy one or more of the following prop-
erties:

Binding Definition. It is computationally hard, for any PPT adversary A, to
come up with two different openings m 6= m∗ ∈ Mck for the same commitment
C. More formally:

Definition 4 (Computationally Binding Commitment). A commitment
scheme Com = (KG,CM) is computationally binding if for any PPT adversary
A, the following probability is negligible:

Pr

[
m 6= m∗ ck← KG(1λ)

∧ CM(ck;m) = CM(ck;m∗) = C (C;m,m∗)← A(ck)

]

19



Hiding Definition. A commitment can be hiding in the sense that it does not
reveal the secret value that was committed.

Definition 5 (Statistically Hiding Commitment). A commitment scheme
Com = (KG,CM) is statistically hiding if it is statistically hard, for any PPT
adversary A = (A0,A1), to first generate two messages A0(ck)→ m0,m1 ∈Mck

such that A1 can distinguish between their corresponding commitments C0 and
C1 where C0←$CM(ck;m0) and C1←$CM(ck;m1).

Pr

b = b′

ck← KG(1λ)
(m0,m1)← A0(ck)

b← {0, 1}, Cb←$CM(ck;mb)
b′ ← A1(ck, Cb)

 = negl(λ).

A.3 Polynomial Commitments

Polynomial commitments (PCs) first introduced by [KZG10] are commitments
for the message space F≤d[X], the ring of polynomials in X with maximum
degree d ∈ N and coefficients in the field F = Zp, that support an interactive
argument of knowledge (KG,Open,Check) for proving the correct evaluation of a
committed polynomial at a given point without revealing any other information
about the committed polynomial.

A polynomial commitment scheme over a field family F consists in 4 algo-
rithms PC = (KG,CM,Open,Check) defined as follows:

KG(1λ, d)→ (ck, vk): given a security parameter λ fixing a field Fλ family and a
maximal degree d samples a group description gk containing a description of
a field F ∈ Fλ, and commitment and verification keys (ck, vk). We implicitly
assume ck and vk each contain gk.

CM(ck; f(X))→ C: given ck and a polynomial f(X) ∈ F≤d[X] outputs a com-
mitment C.

Open(ck;C, x, y; f(X))→ π: given a commitment C, an evaluation point x, a
value y and the polynomial f(X) ∈ F[X], it output a prove π for the relation:

Rkzg :=

(ck, C, x, y; f(X)) :
C = CM (ck; f(X))
∧ deg(f(X)) ≤ d

∧ y = f(x)


Check(vk, C, x, y, π)→ 1/0: Outputs 1 if the proof π verifies and 0 if π is not a

valid proof for the opening (C, x, y).

A polynomial commitment satisfy an extractable version of binding stated
as follows:

Definition 6 (Computational Knowledge Binding). For every PPT ad-
versary A that produces a valid proof π for statement C, x, y, i.e. such that
Check(vk, C, x, y, π) = 1, there is an extractor ExtA that is able to output a pre-
image polynomial f(X) with overwhelming probability:

Pr

[
Check(vk, C, x, y, π) = 1 ck← KG(1λ, d)
∧ C = CM(ck; f(X)) (C, x, y, π; f(X))← (A‖ExtA)(ck)

]
= 1−negl(λ).

20



A.4 KZG Polynomial Commitment

We describe the KZG Polynomial Commitment from [KZG10] which allows to
check correctness of evaluation openings.
We recall the scheme KZG.PC = (KZG.KG,KZG.CM,KZG.Open,KZG.Check) de-
fined over bilinear groups gk = (p,G1,G2,GT ) with G1 = 〈g〉,G2 = 〈h〉:

KZG.KG(1λ, n)→ (ck, vkh): Set keys ckg = {gαi}n−1i=0 , vkh = hα.

KZG.CM(ckg; f(X))→ Cf : For f(X) =
∑n−1
i=0 fiX

i, computes Cf =
∏n−1
i=0 g

fiα
i

=
gf(α).

KZG.Open(ckg;Cf , x, y; f(X))→ π: For an evaluation point x, a value y, com-
pute the quotient polynomial

q(X) =
f(X)− y
X − x

and output prove π := Cq = KZG.CM(ckg; q(X)).
KZG.Check(vkh = hα, Cf , x, y, π)→ 1/0: Check if

e(Cf · g−y, h) = e(Cq, vkh · h−x).

The KZG.PC scheme works similarly for a pair of keys of the form ckh =
{hαi}n−1i=0 , vkg = gα, by just swapping the values in the final pairing equation
check to match the correct basis.

B Assumptions in GGM

B.1 ASSGP Assumption in GGM

Assumption 4 (ASSGP) The (q,m)-Auxiliary Structured Single Group Pair-
ing assumption holds for the bilinear group generator G if for all PPT ad-
versaries A we have, on the probability space gk = (p,G1,G2,GT ) ← G(1λ),
g←$G1, h←$G2 and a, b←$Zp the following holds:

Pr

 A 6= 1G1

∧
∏q−1
i=0 e(Ai, h

ai) = 1GT

∧
∏q−1
i=0 e(Ai, h

bi) = 1GT

g←$G1, h←$G2, a, b←$Zp
σ ← [ga

i

, gb
i

, ha
i

, hb
i

]2q−1i=0

aux← [ga
i

, gb
i

, ha
i

, hb
i

]mi=2q

A← A(gk, σ, aux)

 = negl(λ)

We can similarly define the dual assumption, by swapping G1 and G2 in the
definition above.

Lemma 3. The (q,m)-ASSGP assumption holds in the generic group model.

Proof. SupposeA is an adversary that on input (gk, σ, aux), outputs (A0, . . . , Aq−1) ∈
Gq1 such that

∏q−1
i=0 e(Ai, h

ai) = 1GT
and

∏q−1
i=0 e(Ai, h

bi) = 1GT
. Then its GGM

extractor outputs αi(X,Y ) =
∑m
j=0(xjX

j + yjY
j + cj) for 0 ≤ i < q then we

have:

21



α0(X,Y ) +Xα1(X,Y ) +X2α2(X,Y ) + · · ·+Xq−1αq−1(X,Y ) = 0 (1)

α0(X,Y ) + Y α1(X,Y ) + Y 2α2(X,Y ) + · · ·+ Y q−1αq−1(X,Y ) = 0 (2)

Then we have:

α0(X,Y ) = −Xα1(X,Y )−X2α2(X,Y )− · · · −Xq−1αq−1(X,Y ) (3)

α0(X,Y ) = −Y α1(X,Y )− Y 2α2(X,Y )− · · · − Y q−1αq−1(X,Y ) (4)

If we substract (4) and (3) we got

0 = (X − Y )α1(X,Y ) + · · ·+ (Xq−1 − Y q−1)αq−1(X,Y ) (5)

−(X−Y )α1(X,Y ) = (X2−Y 2)α2(X,Y )+ · · ·+(Xq−1−Y q−1)αq−1(X,Y ) (6)

Now we can divide by (X − Y ) and obtain:

−α1(X,Y ) =(X + Y )α2(X,Y ) + (X2 +XY + Y 2)α3(X,Y ) + · · ·+
+ (Xq−2 + Y Xq−3 + · · ·+ Y q−3X + Y q−2)αq−1(X,Y ) (7)

Substitute the expression of −α1(X,Y ) in equation (3) and remark that all
Xiαi(X,Y ) terms are vanishing:

α0(X,Y ) = XY [α2(X,Y )+(X+Y )α3(X,Y )+· · ·+(Xq−3+· · ·+Y q−3)αq−1(X,Y )]
(8)

This implies that either α0(X,Y ) is a multiple of XY or α0(X,Y ) = 0.
By the GGM assumption, we have that α0(X,Y ) = 0.
We continue by replacing α0(X,Y ) = 0 in equation (8):

0 = α2(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + · · ·+ Y q−3)αq−1(X,Y )

− α2(X,Y ) = (X + Y )α3(X,Y ) + · · ·+ (Xq−3 + · · ·+ Y q−3)αq−1(X,Y ) (9)

Substitute the expression of −α2(X,Y ) in equation (4) and remark that all
Y iαi(X,Y ) terms are vanishing:

0 = −Y α1(X,Y )− Y 2[(X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y+

· · ·+ Y q−3)αq−1(X,Y )]− Y 3α3(X,Y )− · · · − Y q−1αq−1(X,Y ) (10)

Y α1(X,Y ) = Y 2Xα3(X,Y ) · · ·+ (Xq−3Y 2 · · ·+XY q−2)αq−1(X,Y )

Y α1(X,Y ) = Y 2X[α3(X,Y ) · · ·+ (Xq−4 · · ·+ Y q−4)αq−1(X,Y )] (11)

This implies that either α1(X,Y ) is a multiple of XY or α1(X,Y ) = 0.

22



By the GGM assumption, we have that α1(X,Y ) = 0.
We continue by replacing α1(X,Y ) = 0 in equation (11):

0 =α3(X,Y ) + . . . (Xq−4 +Xq−5Y · · ·+ Y q−4)αq−1(X,Y )

−α3(X,Y ) = (X2 +XY + Y 2)α4(X,Y ) + . . . (12)

And so on... till we show that αi(X,Y ) = 0 ∀i = 0 . . . q − 1. We conclude that
the adversarly produced vector (A0, . . . , Aq−1) = 1G1

.

B.2 ASDGP Assumption in GGM

Assumption 5 (ASDGP) The (q,m)-ASDGP assumption holds for the bilin-
ear group generator G if for all PPT adversaries A we have, on the probability
space gk = (p,G1,G2,GT ) ← G(1λ), g←$G1, h←$G2 and a, b←$Zp the fol-
lowing probability is negligible in λ:

Pr


(A 6= 1G1

∨ B 6= 1G2
) ∧∏q−1

i=0 e(Ai, h
ai)
∏2q−1
i=q e(ga

i

, Bi)=1GT

∧∏q−1
i=0 e(Ai, h

bi)
∏2q−1
i=q e(gb

i

, Bi)=1GT

g←$G1, h←$G2, a, b←$Zp
σ = (ga

i

, gb
i

, ha
i

, hb
i

)

aux=(ga
i

, gb
i

, ha
i

, hb
i

)m2q
(A,B)← A(gk, σ, aux)


Lemma 4. The (q,m)-ASDGP assumption holds in the generic group model.

Proof. Suppose A is an adversary that on input (gk, σ, aux), outputs A = (A0,
. . . , Aq−1) and B = (B0, . . . , Bq−1) such that:

q−1∏
i=0

e(Ai, h
ai)

2q−1∏
i=q

e(ga
i

, Bi) = 1GT
and

q−1∏
i=0

e(Ai, h
bi)

2q−1∏
i=q

e(gb
i

, Bi) = 1GT
.

Then its GGM extractor outputs αi(X,Y ) =
∑m
j=0(xjX

j + yjY
j + cj) and

βi(X,Y ) =
∑m
j=0(xjX

j + yjY
j + cj) for 0 ≤ i < q such that:

α0(X,Y ) +Xα1(X,Y ) + · · ·+Xq−1αq−1(X,Y )+

+Xqβ0(X,Y ) + · · ·+X2q−1βq−1(X,Y ) = 0 (13)

α0(X,Y ) + Y α1(X,Y ) + · · ·+ Y q−1αq−1(X,Y )+

+ Y qβ0(X,Y ) + · · ·+ Y 2q−1βq−1(X,Y ) = 0 (14)

By substracting (14) and (13) we got

0 = (X−Y )α1(X,Y )+· · ·+(Xq−1−Y q−1)αq−1(X,Y )+(Xq−Y q)βq(X,Y )+. . .
(15)

23



Now we can factor (X − Y ) and then divide by it and obtain:

−α1(X,Y ) =(X + Y )α2(X,Y ) + (X2 +XY + Y 2)α3(X,Y ) + · · ·+
+ (X2q−2 + Y X2q−3 + · · ·+ Y 2q−3X + Y 2q−2)β2q−1(X,Y ) (16)

Substitute−α1(X,Y ) in equation (13) and remark that allXiαi(X,Y ), Xq+iβq+i(X,Y )
terms are vanishing:

α0(X,Y ) = X

q−1∑
i=2

i−1∑
j=0

Xi−j−1Y j

αi(X,Y ) +

2q−1∑
i=q

i−1∑
j=0

Xi−j−1Y j

βi(X,Y )

−
−
q−1∑
i=2

Xiαi(X,Y )−
2q−1∑
i=q

Xiβi(X,Y )

α0(X,Y ) = X

q−1∑
i=2

i−1∑
j=1

Xi−j−1Y j

αi(X,Y ) +

2q−1∑
i=q

i−1∑
j=1

Xi−j−1Y j

βi(X,Y )


α0(X,Y ) = XY

q−1∑
i=2

i−1∑
j=1

Xi−j−1Y j−1

αi(X,Y ) +

2q−1∑
i=q

i−1∑
j=1

Xi−j−1Y j−1

βi(X,Y )


(17)

This implies that either α0(X,Y ) is a multiple of XY or α0(X,Y ) = 0.
By the GGM assumption, we have that α0(X,Y ) = 0.
We continue by replacing α0(X,Y ) = 0 in equation (17):

−α2(X,Y ) =

q−1∑
i=3

i−1∑
j=1

Xi−j−1Y j−1

αi(X,Y )+

2q−1∑
i=q

i−1∑
j=1

Xi−j−1Y j−1

βi(X,Y )

(18)
Substitute the expression of −α2(X,Y ) in equation (13) or (14) and remark

that all terms Xiαi(X,Y ), Xiβi(X,Y ) (respectively Y iαi(X,Y ), Y iβi(X,Y ))
terms are vanishing.

And so on till we show that αi(X,Y ) = 0 ∀i = 0 . . . q − 1 and βi(X,Y ) =
0 ∀i = q . . . 2q − 1.

We conclude that the adversarly produced vectors (A0, . . . , Aq−1) = 1G1
,

(B0, . . . , Bq−1) = 1G2
.

C Groth16 Scheme

Let C be an arithmetic circuit over Zp, with m wires and d multiplication gates.
Groth16 scheme proves circuit satisfiability, using a Quadratic Arithmetic Pro-
gram (QAP) characterisation. Briefly, a QAP as introduced by [GGPR13] is
translating a circuit into an equivalent arithmetic relation that holds only if the
circuit has a solution.

24



Groth.Setup(1λ,R)

α, β, γ, δ←$Z∗p, s←$Z∗p,

crs =
(
QAP, gα, gβ , gδ, {gs

i

}d−1
i=0 ,

{
g
βvj(s)+αwj(s)+yj(s)

γ

}t
j=0

,
{
g
βvj(s)+αwj(s)+yj(s)

δ

}
j>t

,{
g
sit(s)
δ

}d−2

i=0
, hβ , hγ , hδ, {hs

i

}d−1
i=0

)
vk :=

(
P = gα, Q = hβ ,

{
Sj = g

βvj(s)+αwj(s)+yj(s)

γ

}t
j=0

, H = hγ , D = hδ
)

td = (s, α, β, γ, δ)

return (crs, td)

Groth.Prove(crs, u, w)

u = (a1, . . . , at), a0 = 1

w = (at+1, . . . , am)

v(x) =
∑m
j=0 ajvj(x)

vmid(x) =
∑
j∈Imid

ajvj(x)

w(x) =
∑m
j=0 ajwj(x)

wmid(x) =
∑
j∈Imid

ajwj(x)

y(x) =
∑m
j=0 ajyj(x)

ymid(x) =
∑
j∈Imid

ajyj(x)

h(x) = (v(x)w(x)−y(x))
t(x)

fmid =
βvmid(s) + αwmid(s) + ymid(s)

δ
r, u←$Z∗p
a = α+ v(s) + rδ, b = β + w(s) + uδ

c = fmid + t(s)h(s)
δ

+ ua+ rb− urδ

return (π = (A = ga, B = hb, C = gc))

Groth.Verify(vk, u, π)

π = (A,B,C)

vio(x) =
∑t
i=0 aivi(x)

wio(x) =
∑t
i=0 aiwi(x)

yio(x) =
∑t
i=0 aiyi(x)

fio =
βvio(s) + αwio(s) + yio(s)

γ

Check

e(A,B) = e(gα, hβ) · e(gfio , hγ) · e(C, hδ)

Groth.Sim(td, u)

a, b←$Z∗p

c =
ab− αβ − βvio(s) + αwio(s) + yio(s)

δ

return (π = (A = ga, B = hb, C = gc))

Fig. 3. Groth16 Construction from QAP.

Let Q = (t(x), {vk(x), wk(x), yk(x)}mk=0) be a Quadratic Arithmetic Program
(QAP) which computes C. We denote by Iio = {1, 2, . . . t} the indices corre-
sponding to the public input and public output values of the circuit wires and
by Imid = {t+ 1, . . .m}, the wire indices corresponding to the private input and
non-input, non-output intermediate values (for the witness).

We describe Groth = (Setup,Prove,Verify) scheme in [Gro16] that consists in
3 algorithms as per Figure 3.

25



D Building Blocks for Aggregation

SRS. We need elements from two independent compatible Groth16 SRS:

– Common bilinear group description for both SRS: gk = (p,G1,G2,GT )
– Common group generators for both SRS: g ∈ G1, h ∈ G2

– First SRS with random evaluation point a ∈ Zp for:

v1 = (h, ha, . . . , ha
n−1

) and w1 = (ga
n

, . . . , ga
2n−1

)

– Second SRS with random evaluation point b ∈ Zp for:

v2 = (h, hb, . . . , hb
n−1

) and w2 = (gb
n

, . . . , gb
2n−1

)

Pair Group Commitments. To instantiate our aggregated scheme, we use
two new pairing commitment schemes. These schemes need to satisfy special
properties (as discussed in Section 3) and they require structured commitment
keys cks, ckd of the form cks = (v1,v2), ckd = (v1,w1,v2,w2). We then commit
to vectors A ∈ Gn1 ,B ∈ Gn2 as follows:

1. Single group version CMs(A) := CMs(cks; A) = (TA, UA) where

TA = A ∗ v1 = e(A0, h)e(A1, h
a) . . . .e(An−1, h

an−1

)

UA = A ∗ v2 = e(A0, h)e(A1, h
b) . . . .e(An−1, h

bn−1

)

2. Double group version CMd(A,B) := CMd(ckd; A,B) = (TAB , UAB) where

TAB = (A ∗ v1)(w1 ∗B), UAB = (A ∗ v2)(w2 ∗B)

IPP Protocols. One of the key building blocks for our aggregation protocol
are generalized inner product arguments, called GIPA or IPP protocols. These
protocols, as designed in [BMM+19], enable proving the correctness of a large
class of inner products between vectors of group and/or field elements committed
using (possibly distinct) doubly-homomorphic commitment schemes.

For our aggregation protocol, we need to instantiate two specialised cases of
IPP – multi-exponentiation inner product (MIPP) and an target inner pairing
product (TIPP) – using our new commitment schemes under structured refer-
ences string, and thus, we obtain logarithmic verifier time.

D.1 Relation for MT-IPP

Here we define the relation proven using the merged MT-IPP argument. This is
a conjunction of the two relations MIPP and TIPP:

MIPP Relation. The multiexponentiation product relation:

Rmipp := {((TC , UC), ZC , r; C, r) : ZC = C ∗ r ∧
(TC , UC) = CMs(cks; C) ∧ r = (ri)n−1i=0 }.

26



TIPP Relation. The target inner pairing relation:

Rtipp := {((TAB , UAB), ZAB , r; A,B) : ZAB = A ∗Br ∧
(TAB , UAB) = CMd(ckd; A,B) ∧ r = (ri)n−1i=0 },

where (TAB , UAB) ∈ G2
T , ZAB = A ∗Br ∈ GT , A ∈ Gn1 , B ∈ Gn2 , r ∈ Zp.

MT-IPP Relation. The merged MT-IPP relation:

Rmt :=


(
(TAB , UAB), (TC , UC),

ZAB , ZC , r; A,B,C
) :

(CMd(A,B), ZAB , r; A,B) ∈ Rtipp

∧
(CMs(C), ZC , r; C) ∈ Rmipp


for vectors A,C ∈ G1 and B ∈ G2.

E Final Commitment Keys

In this section, we will detail one step of the MT-IPP protocol: Checking the
correctness of the final commitment key, obtained after all ”split & collapse”
steps.

Recall that our scheme MT-IPP achieves logarithmic proof size using a spe-
cially structured commitment scheme that allows the prover to use one new
challenge xj in each round of recursion to transform the commitments homomor-
phically. Because of this, the verifier must also perform a linear amount of work
in rescaling the commitment keys (cks, ckd). To avoid having the verifier rescale
the commitment keys, our scheme apply the same trick as [DRZ20, BMM+19]:
we do this by outsourcing the work of rescaling the commitment keys to the
prover.

Then what is left is to convince a verifier that this rescaling was done correctly
just by checking a succinct proof on the final keys.

Proof for Final Key. In our MT-IPP scheme, the prover will compute the final
commitment keys v1, v2, w

′
1, w

′
2 (the result of many rounds of rescaling/collapsing

v1,v2,w
′
1,w

′
2 until the end of the loop) and then prove that they are well-formed.

This is possible due to the structure in the commitment keys. For ease of
presentation, we will show how this proof works for a generic vector v, where
v = (v1, v2, . . . , v2`) = (g, gα, gα

2

, . . . gα
n−1

). The other checks for the keys v1, v2
and w1, w2 work in an analogously fashion.

Let us first define the relation to be proven, i.e. the correctness of the final
commitment key v ∈ G1 given the initial key v:

Rck :=
{

(gk, v, f(X), ckg = ({gα
i

}2n−2i=0 , vkh = hα)) : v = gf(α)
}

The argument for the relationRck allows the verifier to check well-formedness
of the final structured commitment key. The idea is simple: the final commitment

27



key v is interpreted as a KZG polynomial commitment that the prover must open
at a random point z. The verifier produces the challenge point z ∈ Zp and the
prover provides a valid KZG opening proof of f(z) for the commitment v. The
interaction can be removed using Fiat-Shamir heuristic via a collision-resitant
hash to generate the challenge z. The proof of security of such a protocol is given
in [BMM+19] in the algebraic group model. In a nutshell, an algebraic adversary
that convinces a verifier of incorrect keys can extract a valid 2n-SDH instance
by breaking knowledge-binding of KZG.PC polynomial commitment scheme.

We will use a polynomial commitment scheme (Definition A.3) that allows
for openings of evaluations on a point and proving correctness of these openings.
The concrete scheme is called KZG.PC and works for both groups G1 and G2

as described in Appendix A.4. The verification requires an evaluation of the
corresponding polynomial and four pairing checks.

Polynomial Formula. We will show now, hot to define the correct polynomials to
be committed under KZG.PC scheme in order to show that the final commitment
keys were honestly generated.

Recall the structure of the 4 vectors v1,v2 ∈ G2 and w1,w2 ∈ G1 used for
the commitment keys cks, ckd:

v1 = (h, ha, . . . , ha
n−1

), w1 = (ga
n

, . . . , ga
2n−1

), w′1 := wr−1

1

v2 = (h, hb, . . . , hb
n−1

), w2 = (gb
n

, . . . , gb
2n−1

), w′2 := wr−1

2

We will show the formulae for the polynomials the two polynomials fv(X)
and fw(X) that we used in our scheme MT-IPP for v1, v2 and for w′1, w

′
2 are

correct.
For ease of presentation, we state and prove the formula for a generic vector

v = (v1, v2, . . . , v2`) = (g, gα, gα
2

, . . . gα
2`−1

) of length n = 2` to which we apply
the same rescaling as for the commitment keys cks, ckd. The specific formulae
for v1,v2,w

′
1,w

′
2 are easy to deduce once we have a formula for v.

Consider a challenge xj for round j, where the total number of rounds is `.
Note that at each round j we split the sequence v1, v2, . . . , vn in half and we use
xj to rescale first half and the second half of the vector recursively until we end
up with a single value v.

We claim that the formula for some initial key v = (v1 = g, v2 = gα, . . . , vn =

gα
n−1

) and for a vector of challenges x1 . . . x`−1, x` is:

v = g
∏`−1

j=0(1+x`−jα
2j ).

We will prove the general formula by induction:

Step 1. Check the formula for ` = 1 (initial commitment key v has two elements
v1, v2):

v = v1v
x1
2 = g1+x1α = g

∏0
j=0(1+x`−jα

2j ).

Step 2. Suppose the statement is true for `− 1. We prove it for `.

28



On the first round, we have a challenge x1 and we rescale the commitment
key v which has length n = 2` as follows:

v′ = v[:2`−1] ◦ vx1

[2`−1:]
,

v′ = (g · gx1α
2`−1

, gα · gx1α
2`−1+1

, gα
2 · gx1α

2`−1+2

, . . . ).

We can write this differently as v′=(v1v
x1α

2`−1

1 , . . . v2`−1vx1α
2`−1

2`−1 ).
This gives us a nicely written commitment key after first round

v′ = (v1+x1α
2`−1

1 , v1+x1α
2`−1

2 , . . . v1+x1α
2`−1

2`−1 ) = v1+x1α
2`−1

[:2`−1]
.

We can apply the induction assumption for step ` − 1 to v[:2`−1] which is a

commitment key of length 2`−1. This means the final key for v is:

v =

(
g
∏`−2

j=0

(
1+x`−jα

2j
))(1+x1α

2`−1
)

= g
∏`−1

j=0(1+x`−jα
2j ).

Remark than in more generality, this can be written as:

v = v
∏`−1

j=0(1+x`−jα
2j )

1

Therefore, if we start with an initial key w = (w1 = gα
n

, wα
n+1

2 . . . , wn =

gα
2n−1

), the final key w can be written as:

w = w
∏`−1

j=0(1+x`−jα
2j )

1 = gα
n ∏`−1

j=0(1+x`−jα
2j )

29


	SnarkPack: Practical SNARK Aggregation

