
Decentralized Hole Punching
Marten Seemann

Protocol Labs
marten@protocol.ai

Max Inden
Protocol Labs

max.inden@protocol.ai

Dimitris Vyzovitis
Protocol Labs

vyzo@protocol.ai

ABSTRACT
We present a decentralized hole punching mechanism built into the
peer-to-peer networking library libp2p [1]. Hole punching is cru-
cial for peer-to-peer networks, enabling each participant to directly
communicate to any other participant, despite being separated by
firewalls and NATs. The decentralized libp2p hole punching proto-
col leverages protocols similar to STUN (RFC 8489 [2]), TURN (RFC
8566 [3]) and ICE (RFC 8445 [4]), without the need for any cen-
tralized infrastructure. Specifically, it doesn’t require any previous
knowledge about network participants other than at least one (any
arbitrary) node to bootstrap peer discovery. The key insight is that
the protocols used for hole punching, namely address discovery
and relaying protocols, can be built such that their resource require-
ments are negligible. This makes it feasible for any participant in
the network to run these, thereby enabling the coordination of hole
punch attempts, assuming that at least a small fraction of nodes is
not located behind a firewall or a NAT.

1 INTRODUCTION
Consumer devices as well as computers in the corporate networks
are often located behind a Network Address Translator (NAT) and /
or a firewall. These devices usually allow (relatively) unobstructed
access from within the network to the internet, but block incoming
connections from computers on the internet to a local machine on
the network.

While this network configuration provides security and privacy
advantages, it poses significant challenges for connectivity in peer
to peer (p2p) applications [6]. In most peer-to-peer networks only
a small fraction of nodes are both well resourced and publicly
reachable. The majority of nodes operates with limited resources
and behind firewalls and/or NATs. Direct connectivity between
these limited nodes is key for a peer to peer network to functionwell
as a whole. Therefore, so called "hole punching" techniques have
been developed to facilitate the establishment of direct connections
between nodes located behind such NATs and firewalls. Recent
measurements [? ] found about 52 percent of nodes in the IPFS p2p
network to be located behind a NAT.

Conventionally, hole punching needs central coordination servers
running the STUN (Session Traversal Utilities for NAT) and co-
ordination for the ICE (Interactive Connectivity Establishment)
protocols. This creates reliance on centralized architecture, in two
ways: first, somebody needs to run these coordination servers, and
second, these servers need to be hard-coded / configured in the p2p
application.

Decentralizing this infrastructure therefore makes the network
more resilient against targeted attacks and against censorship at-
tempts, while at the same time removing the necessity of maintain-
ing these servers.

2 NATS AND FIREWALLS
NATs can be classified by the way they map addresses from nodes
in the internal network to external (internet-facing) addresses. The
terminology used in RFC 4787 [5] will be used in this paper. In
general, a NAT is a device that maps an internal address tuple (IP
and port) 𝑋 :𝑥 to an external address tuple 𝑋 ′:𝑥 ′. The NAT type
is determined by looking at the relationship between the external
addresses 𝑋 ′

1:𝑥
′
1 and 𝑋

′
2:𝑥

′
2 assigned by the NAT when connecting

to external addresses 𝑌1:𝑦1 and to 𝑌2:𝑦2 afterwards (see figure 1).
• Endpoint-Independent Mapping: Packets sent from the same

internal address 𝑋 :𝑥 are mapped to the same address 𝑋 ′:𝑥 ′,
for all combinations of 𝑌1:𝑦1 and 𝑌2:𝑦2.

• Endpoint-Dependent Mapping: Packets sent from the same
internal address 𝑋 :𝑥 are mapped to different addresses
𝑋 ′:𝑥 ′, either when sent to to a different address tuple, i.e.
for all combinations of 𝑌1:𝑦1 unequal 𝑌2:𝑦2 (called Address
and-Port-Dependent Mapping), or when sent to a different IP
addresses, i.e. for 𝑌1 unequal 𝑌2 (called Address-Dependent
Mapping).

NATs using Endpoint-Independent Mapping lend themselves to re-
liable hole punching. Nodes can rely on their external address𝑋 ′:𝑥 ′
to be stable, and advertise this address to other nodes. On the
other hand, there is no reliable way to punch through NATs using
Endpoint-Dependent Mappings; the difficulty lies in predicting the
port the NAT will assign, which becomes exponentially harder with
concurrent connection attempts.

For our purposes, in their most basic configuration firewalls are
conceptually simpler than NATs. A firewall makes sure that packets
originating from an address outside the network only pass through
the firewall if a packet was sent to the same address from within
the network before (within a certain time frame).

𝑌1 𝑌2

Internet

NAT

𝑋

𝑋 :𝑥

𝑋 ′
1:𝑥

′
1 𝑋 ′

2:𝑥
′
2

Figure 1: Address and Port Mapping (after [5]). We classify NATs
by the IP addresses they assign for subsequent sessions originating
from the internal node 𝑋 to external nodes 𝑌1 and 𝑌2. For Endpoint-
Independent Mappings, the external address 𝑋 ′:𝑥′ will be the same,
regardless of the external endpoint. For Endpoint-Dependent Map-
pings, the external addresses will differ.



Marten Seemann, Max Inden, and Dimitris Vyzovitis

3 DIRECT CONNECTION ESTABLISHMENT IN
LIBP2P

libp2p uses stream-multiplexed connections, either by making use
of QUIC streams, or by applying a stream multiplexer in the case of
a TCP connection. Connections are always encrypted, and nodes
verify each others’ identities during a cryptographic handshake.

Application protocols running on top of libp2p request streams
from the libp2p stack in order to exchange application data with
a peer. At the same time, libp2p itself uses streams to run various
libp2p-internal protocols.

In the following, we describe how we leverage various libp2p
functionality in order to punch holes into NATs and firewalls.

3.1 Identify Protocol
Identify is usually the first protocol run on a newly established
libp2p connection. It serves a variety of use cases in the libp2p stack,
but for the purposes of this discussion, it provides functionality
roughly similar to the STUN protocol (RFC 8489 [2]). The peer
sends the observed address (along with other information) to its
newly connected peer. This allows that node to discover its public
IP address and port, and infer if it is located behind a NAT. By
observing the reported addresses from multiple peers, the node can
also infer it’s located behind a NAT that uses endpoint-dependent
or endpoint-independent mappings.

Using Identify instead of STUN provides multiple advantages:
First, it is essentially free, as it reuses an existing connection. Second,
it doesn’t require any additional infrastructure or configuration,
as the vast majority of the nodes on a libp2p network support
this protocol. Third, the information can be assumed to be more
reliable than what could be obtained from a STUN connection, as
the connection leverages the same set of transport protocols as the
hole punched connection.

3.2 AutoNAT Protocol
The AutoNAT protocol is a libp2p protocol introduced in 2018. It is
used determine the reachability of a node. Identify cannot provide
that information: Just learning that a NAT uses a certain IP address
on outgoing packets doesn’t necessarily imply that other nodes will
be able to successfully dial that address from the internet.

Using AutoNAT, a node can request a peer to dial a new connec-
tion on a set of addresses. The peer then reports back if it succeeded
in establishing a new connection, along with the specific address.

If these dial back attempts succeed on a regular basis, the node
can conclude that it is not behind a NAT or firewall that blocks
incoming connections. In the following, we call this a "public node".
On the other hand, if these dial-back attempts regularly fail, the
node can conclude that it cannot receive incoming connections
(without prior coordination), and is called a "private node". Public
nodes provide (limited) relay services to private nodes. Conversely,
a private node might start searching and acquiring reservations
with relay servers in order to coordinate hole punches to other
nodes later on.

3.3 Circuit v2 Protocol
Circuit v2 is a relaying protocol used primarily for the coordina-
tion of hole punching. The protocol was designed to be extremely

lightweight, in the sense that running a relay server doesn’t impose
any non-negligible cost in terms of processing power or bandwidth.
While this means that Circuit v2 relays by default cannot be used
as TURN-style (RFC 8656 [3]) relay servers, which relay the entire
traffic between two nodes, it allows the vast majority of public
libp2p nodes on the network to provide relaying services.

To achieve this minimal footprint, Circuit v2 employs multiple
strategies: First, private nodes wishing to use a relay’s service need
to obtain a reservation with that relay. Relay servers limit the
number of concurrent reservations, and reject incoming reservation
requests once the limit is reached. Second, every reservation is
only valid for a certain duration and only allows the exchange of a
bounded amount of data in a temporally limited relayed connection.

Once a reservation has been obtained, the private node makes
sure to keep the connection to the relay server alive – after all,
the relay would not be able to dial a connection to that node. In
practice, a private node attempts to make reservations with a few
relays at the same time.

After having obtained a reservation, the node advertises that
it is reachable via the relay server. Other nodes are then able to
first connect to the relay server, and then ask the relay to "relay" a
connection to the private node. To do so, the relay server opens a
new stream to the private node and notifies it about the incoming
connection attempt. Once the private node agrees to establish a
connection, the relay copies all data from the external node’s stream
onto this stream, and vice versa, effectively creating a bidirectional
byte-stream between the two nodes.

The two nodes use this byte-stream to establish a virtual (en-
crypted) libp2p connection. This means that a malicious relay can-
not intercept or alter data sent on the relayed connection. The worst
it can do is to stop forwarding data, which is a scenario that libp2p
nodes are well equipped to handle – connections on the internet
regularly break for all kinds of reasons.

3.4 Hole Punch Coordination (DCUtR - Direct
Connection Upgrade through Relay)

Nodes use theDCUtR protocol (Direct Connection Upgrade through
Relay) to coordinate the establishment of a direct connection over
a relayed connection. This protocol was designed to be extremely
lightweight, under normal conditions the stream is only needed for
2 network round-trips and exchanges less than 500 bytes in each
direction.

The protocol interaction is triggered once a private node accepts
a relayed connection, that is considered the initiator of the protocol.
At this point, it does not know if its peer is a public or a private node,
but it does have the peer’s addresses obtained through identify. In
case the peer is a public node, no hole punching is needed: The
initiator can simply dial a direct connection to the peer. This is
called Connection Reversal, and depicted in figure 2.

If the direct connection attempt fails, the initiator concludes that
its peer is most likely behind a NAT itself and and starts the hole
punching procedure to establish a direct connection, as depicted
in 3.

The first message exchanged is the CONNECT message. It con-
tains a list of addresses that a node can use for hole punching. The



Decentralized Hole Punching

Relay

Internet

NAT 𝑌

𝑋

1.

2.
3.

Figure 2: Connection Reversal (after [6]): Node 𝑌 connects to the
relay server (1.) and asks it to relay a connection to node𝑋 (2.). After
exchanging their respective addresses in the CONNECT message
of the DCUtR protocol, 𝑋 first dials 𝑌 directly (3.). This connection
attempt only succeeds if 𝑌 is a public node.

initiator sends this message to its peer, which replies with a CON-
NECT message. The initiator uses the exchange of these messages
to measure the network round trip time of the relayed connection.

The initiator responds with a SYNC message on the same stream.
When the peer receives this message, it immediately starts dialing
the initiator’s addresses (as conveyed in the CONNECT message.
The initiator waits for half the round trip time (as measured in the
previous step), then it also starts establishing a direct connection.
Assuming a symmetric path between both peers, this synchroniza-
tion procedure leads to both nodes sending first packet to their peer
at approximately the same time, thereby creating the required NAT
mapping to let the peer’s packet pass in.

The exact mechanism used to establish the direct connection
depends on the transport protocol. In the following sections we
describe how hole punching works on TCP and QUIC.

Once a direction connection between the two nodes has been
established, the relayed connection is not needed anymore, and can
be actively closed by the endpoints.

3.4.1 Hole Punching on TCP. TCP hole punching is a well-explored
concept. It uses the fact that contrary to the normal, well-known
TCP 3-way handshake (SYN, SYN-ACK, ACK), a TCP connection
can also be established when both nodes receive a SYN packet
(and not a SYN-ACK packet) after having sent their SYN. This is
called TCP Simultaneous Open [7]. The coordination procedure
described in the section above makes sure that both nodes send
their respective SYN packets at the same time.

3.4.2 Hole Punching on QUIC. In order to hole punch QUIC con-
nections, we employ a technique that – to our knowledge – has not
been described in the literature before.

Contrary to TCP, where TCP Simultaneous Open is used to
establish a connection, the initiation of a QUIC connection from
each side would lead to two separate connections, as each QUIC
connections are uniquely identified by their QUIC connection ID.

Instead we use the coordinated roles to determine the nodes’
behavior: The "client" role starts dialing a QUIC connection, while
the "server" sends a few UDP packets containing a random payload
destined to the other node. The sole purpose of these packets is to
create a NAT mapping to allow the client’s packet to pass through
the NAT.

Relay

Internet

NAT NAT

𝑋 𝑌

Figure 3: If both nodes are behind NATs / firewalls, the relay server
is used to coordinate a hole punch through these two NATs.

4 HOLE PUNCHING IN THEWILD
4.1 Preliminary Results
During the development of the protocols, we conducted a controlled
experiment with around 45 volunteers from Protocol Labs. The
setup consisted of a limited relay server, a presence server, and
participant nodes. Participants ran a small daemon that announced
its presence and periodically tried to establish direct connections
to other participants. This allowed us to test our hole punching
procedures with residential networks and NAT devices.

Hole punching succeeded for 86% of the attempts on TCP and
for 93% on QUIC. The vast majority of hole punching attempts
succeeded on the first attempt, and we were able to show that
retrying more than 3 times did not increase the success rates.

5 CONCLUSIONS
We presented libp2p’s hole punchingmechanism, establishing direct
connection between peers behind NATs and/or firewalls, without
reliance on centralized infrastructure. The current setup allows hole
punching through NATs using endpoint-independent mappings,
and can be extended to use techniques for other NAT types in the
future. The hole punching mechanism has been integrated both
into go-libp2p and rust-libp2p. With the v0.11.0 go-ipfs release [8],
published in December 2021, Circuit v2was enabled by default on all
public nodes within the IPFS network, which equates to roughly 20%
of all public nodes by the time of writing (February 2022). Once
enabled by default on IPFS nodes behind NATs and/or firewalls,
we plan to conduct comprehensive measurements, evaluating hole
punching success across the entire heterogeneous IPFS network.

REFERENCES
[1] libp2p. https://www.libp2p.io.
[2] J. Rosenberg D. Wing R. Mahy P. Matthews M. Petit-Huguenin, G. Salgueiro. RFC

8489: Session Traversal Utilities for NAT (STUN). February 2020.
[3] P. Matthews J. Rosenberg T. Reddy, A. Johnston. RFC 8656: Traversal Using Relays

around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT
(STUN). February 2020.

[4] J. Rosenberg A. Keranen, C. Holmberg. RFC 8445: Interactive Connectivity Estab-
lishment (ICE): A Protocol for Network Address Translator (NAT) Traversal. July
2018.

[5] C. Jennings F. Audet. RFC 4787: Network Address Translation (NAT) Behavioral
Requirements for Unicast UDP. January 2007.

[6] D. Kegel B. Ford, P. Srisuresh. Peer-to-peer communication across network address
translators. In Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’05, page 13, USA, 2005. USENIX Association.

[7] DARPA Internet Program. RFC 793: Transmission Control Protocol. September
1981.

[8] go-ipfs v0.11.0. https://github.com/ipfs/go-ipfs/releases/tag/v0.11.0.

https://www.libp2p.io
https://github.com/ipfs/go-ipfs/releases/tag/v0.11.0

	Abstract
	1 Introduction
	2 NATs and Firewalls
	3 Direct Connection Establishment in libp2p
	3.1 Identify Protocol
	3.2 AutoNAT Protocol
	3.3 Circuit v2 Protocol
	3.4 Hole Punch Coordination (DCUtR - Direct Connection Upgrade through Relay)

	4 Hole Punching in the Wild
	4.1 Preliminary Results

	5 Conclusions
	References

