Automating QUIC Interoperability Testing

Marten Seemann
Protocol Labs
marten@protocol.ai

ABSTRACT

We present QuicInteropRunner (QIR) [1, 2], a test framework
for automated and on-demand interoperability testing be-
tween implementations of the QUIC protocol [3]. QIR is a
framework in which QUIC clients and servers interact with
each other over a network that simulates various network
conditions using ns-3 [4]. QIR automates QUIC interoperabil-
ity testing by running a suite of test cases between container-
ized QUIC implementations. We describe the key constraints
and insights that defined our work, recent innovations that
made the framework possible, a high-level overview of our
design, and a few exemplary tests. QIR is now supported and
used by ten QUIC implementations as part of their develop-
ment process, confirming our thesis that there is a need for
automating interoperability testing and making it available
on demand.

1 INTRODUCTION

The Internet is a multi-vendor system defined by open stan-
dards. Interoperability testing has long been a cornerstone
of the development of these open standards, for two reasons.
First, different implementations of an open protocol interact
with each other on the Internet and therefore need to be
tested for those interactions. Second, it exposes gaps and am-
biguities in the specification, as different implementations
can make conflicting assumptions in such cases. For both
of these reasons, the IETF, the primary standards body for
Internet protocols, requires interoperability testing as a part
of the development process [5].

Interoperability testing however has historically been a
manual process. For example, SCTP [6] interoperability meet-
ings entailed bringing computers into a room, wiring them
to the same network, manually running various tests, and ex-
amining the outcomes locally. More recent efforts have relied
on Internet infrastructure for testing where possible, remov-
ing the need for co-locating implementations. For instance,
HTTP/2 and QUIC implementers would set up servers run-
ning their implementations on publicly accessible Internet
endpoints, against which others could run tests. Neverthe-
less, the testing itself has remained manual [7].

Manual testing suffers from three significant scaling limi-
tations. First, it limits the number of implementations that
can be tested, since there are a quadratic number of combina-
tions to test. Second, it limits the number of features that can

Jana Iyengar
Fastly
jri@fastly.com

be tested, a problem that is made worse by the complexity
of protocols built for the modern Internet.

Finally, it limits the range of network conditions under
which the protocol is tested. Ad-hoc testing over a local net-
work or over the public Internet does not test the implemen-
tations’ performance in the variety of network conditions
under which the protocol is expected to perform well. As a
result, various parts of the protocol, such as those designed to
handle adverse network conditions, likely remain untested.

In the IETF’s QUIC working group [8], these limitations
meant that comprehensive interoperability testing was only
performed roughly once every month. This interoperability
did not include repeatable and precise tests of the implemen-
tations, and the outcomes of the tests were determined by
manual inspection of logs [7].

The QuicInteropRunner (QIR) is our attempt at overcom-
ing these limitations in building performant and robust QUIC
implementations [1]. Figure 1 shows the output of a single
QIR run between three QUIC implementations for a selection
of tests. Figure 2 shows a screenshot of the web output of a

| | quic=go | quicly | picoquic |
| quic-go | I I I
I I I I I
I I I I I
| quant | I I I
I I I I I
I I I I I
| mvfst | | | |
I I I I I
| | MZ | M | MZ |

Figure 1: Console output of a local run of the QUIC in-
terop runner. Column headers refer to servers and row head-
ers refer to clients. Tests are indicated by their letter sym-
bols in each cell. Test outcomes are Success, Unsupported,
or Failure, as shown in the top, middle, and bottom rows
within each cell. Endpoint implementations and test cases
can be specified via command line parameters, allowing im-
plementers to focus their testing on specific pairs and inter-
actions. Test cases shown here are H: Handshake, S: Retry,
M: Multiplexing, B: Blackhole, Z: 0-RTT, 3: HTTP/3.

SIGCOMM EPIQ Workshop, 2020

Marten Seemann and Jana lyengar

Run: | 2020-05-05T16:21:25UTC ¥
Start Time: 5/5/2020 4:21:25 PM UTC
Duration: 16:27:37

Interop
quic-go quicly ngtcp2 quant mvfst quiche picoquic aioquic
HDCMSRZ3BL1L2C1C2 HDCMSRBL1L2C1C2 3 HDCMSRZBLIL2C1C2 HDCMRZ3BL2C2 HDCMSRZ3BL2C2 HDCMSRZ3BL1L2C1C2 HDCSR3BL1L2C2
quic-go
HDCMSRZBLIL2C1C2 uct MC1
HDCMSRBLIL2C2 HDCMSRBL1L2C1C2 HDCL2C2 HDCMSRBL2C2 HDCSRBL1L2C1C2
quicly
c HDCMSRBL1L2C1C2 HDCMSRBLIL2C1C2 MRB uc HDCMSRBL1L2C1C2 M
3 HDCMSRZ3BLIL2C2 HDCM3BL2C2 HDCMSRZ3BL2C2 HDCMSRZ3BL2C2 HDCSR3BL1L2C2
ngtcp2
HDCMSRZBL1L2C1C2 HDCMSRBL1L2C1C2 c1 HDCMSRZBL1L2C1C2 RZ uct uc McC1
HDCMSRZBL1L2C1C2 HDCMSRBL2 HDCMSRZBL1L2C1C2 HDCRZBL2C2 HDCMSRZBL2C2 HDCMSRZBL2C1C2 HDCSRBL1L2C1C2
quant
Lrecicz HDCMSRZBL1L2C1C2 M uc u M
HDCZ3BL2C2 HDCL2C2 3 HDCZBL2C2 HDCMZ3BL2C2 HDCZL2C2 HDCZ3BL2C2 L2c2
mvfst
MR MR3B HDCMRZBL2C2 MR R MR3B MR HDCMR3B
HDCMS3BL2C2 HDCMSBL2C2 HDCMS3BL2C2 HDC3BL2C2 HDCMS3BL2C2 HDCs3BL2C2
quiche
uct uct uc HDCMSBL1L2C1C2 M uc HDCMS3BLIL2C1C2 MLct
HDCMSRZ3BL1L2C1C2 HDCMSRBL1L2C2 3 HDCMSRZBLIL2C1C2 HDCMRZ3BL2C2 HDCMSRZ3BL2C1C2 HDCMSRZ3BL1L2C1C2 HDCSR3BL1L2C1C2
kwik
c HDCMSRZBLIL2C1C2 u M
HDCMSRZ3BL1L2C1C2 HMSRL1L2C1C2 HDCMSRZ3BL2C2 HDCMSRZBL1L2C1C2 HDCRZ3L2C2 HDCMSRZ3B HDCMSRZ3BL1L2C1C2 HSR3L2
picoquic
DCB uc MB LiLz2cicz DCMBLIC1C2
HDCMSR3BL1C1 HDCMSRBL2C2 3 HDCMR3BL2C2 HDCMSR3BL2C2 HDCSR3BL2C1C2
aioquic
L2c2 uct HDCMSRBL1L2C1C2 HDCMSRBLIL2C1C2 uct HDCMSR3BL1L2C1C2 ML
H3C2 H H HM HDC3 H3 HDC3C2
neqo
DCMBL2 DCMBL2C2 HDCM3BL2C2 DCMBL2C2 DC3BL2C2 MBL2C2 DCMBL2C2 MBL2
Measurements
quic-go quicly ngtcp2 quant mufst quiche picoquic aioquic
icig0 G: 9513 (+ 23) kbps G: 9501 (+ 16) kbps G G: 8702 (+ 157) kbps G: 9334 (+19) kbps G: 9523 (= 11) kbps G: 9474 (= 18) kbps G: 9115 (= 21) kbps
qa 9 C: 5429 (+ 154) kbps C: 6214 (+ 236) kbps | C: 3720 (= 212) kbps C: 8852 (+ 112) kbps C: 5750 (= 130) kbps C: 7179 (= 65) kbps C: 4986 (= 351) kbps
uicl G: 9566 (1) kbps G: 9482 (= 32) kbps G G G: 9290 (+ 46) kbps G: 9553 (x 0) kbps G G: 9383 (= 11) kbps
ey C: 7248 (+ 93) kbps C: 5057 (+ 323) kbps c c C: 8943 (+ 119) kbps C: 6050 (= 343) kbps c C: 4868 (+ 189) kbps
ngtep2 G G G: 9165 (+ 18) kbps G G: 7080 (+ 1765) kbps G: 9203 (+ 7) kbps G: 9367 (= 13) kbps G: 9128 (= 19) kbps
i Cc c C: 5103 (+ 184) kbps c c C: 6092 (+ 351) kbps C: 7320 (+ 393) kbps C: 5377 (+ 288) kbps
— G: 9451 (= 17) kbps G: 9469 (= 7) kbps G G: 8986 (= 76) kbps G: 9284 (= 3) kbps G: 9509 (= 11) kbps G: 9417 (= 10) kbps G: 9348 (= 10) kbps
ke C: 6908 (+ 432) kbps C: 6326 (+ 265) kbps [+ C: 4769 (+ 170) kbps C: 8887 (+ 123) kbps C: 6156 (+ 223) kbps C: 7086 (+ 103) kbps C: 5489 (+ 405) kbps
mvfst G G: 9423 (x 7) kbps G G G: 8918 (= 128) kbps G G: 8939 (x 70) kbps G
C: 5490 (+ 455) kbps C: 4962 (+ 184) kbps c c C: 8494 (+ 97) kbps c c c
uiche G: 9324 (+ 15) kbps G: 9324 (+ 14) kbps G: 9233 (+ 16) kbps G G: 9076 (+ 76) kbps G: 9057 (+ 36) kbps G G: 8886 (= 21) kbps
L C: 6527 (+ 60) kbps C: 6760 (= 349) kbps C: 5557 (= 117) kbps c c C: 6080 (= 106) kbps c C: 5640 (+ 165) kbps
kwik G: 8819 (x 23) kbps G: 8846 (+ 17) kbps G G: 6896 (+ 217) kbps G: 8205 (+ 85) kbps G: 8788 (+ 212) kbps G: 8903 (13) kbps G: 8639 (+ 62) kbps
C: 6626 (+ 202) kbps C: 6258 (+ 139) kbps o5 C: 4495 (= 264) kbps C: 8253 (+ 150) kbps C: 6256 (+ 160) kbps C: 7402 (x 217) kbps C: 5644 (x 269) kbps
icogulc G: 9432 (+ 54) kbps G G: 9255 (+ 15) kbps G: 9084 (+ 40) kbps G: 9188 (+ 63) kbps G G: 9418 (+ 4) kbps G
peoa C: 6015 (+ 343) kbps (] C: 5049 (+ 295) kbps C: 5081 (+ 623) kbps C: 8785 (+ 58) kbps c C: 7024 (x 1249) kbps c
aioquic G: 9433 (+ 20) kbps G: 9447 (+ 9) kbps G G G: 9248 (+ 61) kbps G: 9489 (= 0) kbps G G: 9315 (+ 13) kbps
" c C: 5795 (+ 166) kbps [[C: 8910 (+ 84) kbps [[C: 5681 (+ 171) kbps
o G: 8319 (+ 17) kbps G: 8093 (+ 37) kbps G G: 5603 (+ 593) kbps G G: 7530 (+ 22) kbps G: 8037 (+ 73) kbps G: 7698 (+ 46) kbps
. c c c c c Cc [c

Figure 2: The QUIC interop runner web interface [2]. Several tests are run for each client-server combination;

tests are indi-

cated by their letter symbols in each cell. In the Interop table, test outcomes can be Success, Unsupported, or Failure, as shown
in the top, middle, or bottom row within each cell. The Measurements use a network bandwidth of 10Mbps, as described in
Section 2.3. Results are reported as measured averages (with the standard deviation), and empty results represent failed runs.
Log files from client and server generated during the test run, as well as log files and packet captures recorded by the network,
are linked from each test case.

run between the ten implementations for our entire suite of
interoperability and measurement tests.

QIR automates QUIC interoperability testing by running a
suite of test cases between containerized QUIC implementa-
tions. QIR is a framework in which QUIC clients and servers

interact with each other over a network that simulates var-
ious network conditions using ns-3 [4]. Each test case is
described in the framework and made known to the imple-
mentations at run time. The outcomes of the tests are veri-
fied by the QIR framework via validation of transferred ob-
jects and programmatic inspection of packet traces. QIR also

Automating QUIC Interoperability Testing

makes performance measurements under different network
conditions possible. Importantly, QIR can be run locally, mak-
ing both on-demand and continuous interoperability testing
possible. To our knowledge, QIR is the first automated inter-
operability testing framework for a network protocol.

QIR includes several major QUIC implementations. As
of this writing, ten QUIC implementations (two of which
implement only client functions) are included in QIR. Any
implementer can include their implementation in QIR by
building a compatible container image, making it publicly
available, and adding it to the list of implementations [9].

2 QIR DESIGN

QIR’s design came out of our experience with the limitations
of manual QUIC interoperability testing. We first go through
the design constraints that shaped QIR’s design, followed by
detailed descriptions of QIR’s components.

Since most QUIC implementations are in user space, we
decided to focus our efforts on supporting user-space imple-
mentations. Since these implementations could all be built
on Linux, we also chose to limit ourselves to that one plat-
form instead of trying to build for multiple platforms. We
acknowledge that this restricts us from testing existing ker-
nel implementations or user-space ones that cannot be built
on Linux.

2.1 Design constraints

QIR’s design constraints were gleaned from our experience
with manual interoperability testing with QUIC, and were
as follows:

e No source code: QUIC implementations are written in
different programming languages, under a variety of
licenses, and with vastly different build environments
and requirements. Building all implementations from
their source for regular testing could require a signifi-
cant amount of time and other resources. Importantly,
we could not assume that the source code for all QUIC
implementations would be available. As a result, our
test framework could not expect the source code to be
available, and would preferably not build implementa-
tions from source.

e Maintenance delegation: Each implementer would main-
tain and update their own endpoint, and make it pub-
licly available on their own schedule.

e On-demand and continuous testing: To enable inter-
operability testing as part of a typical development
workflow, the test framework would need to allow for
on-demand testing of any set of implementations. This
could then be extended to continuous testing of any
set of implementations.

SIGCOMM EPIQ Workshop, 2020

e Repeatable performance testing: Performance testing
of the different implementations would need to use
carefully constructed network scenarios and would
need to be repeatable for debugging purposes.

To meet these constraints, our key insight was to use
containers as QIR’s basic building block. Containers give
implementers control over their binary images, enabling
them to bundle all build- and runtime-dependencies into
their own, independent environments, and allowing them to
publish updated images on their own schedule. Since they are
distributed as binaries, containers also allow closed-source
implementations to participate in the framework. Finally,
containers enable implementers to make interoperability
testing part of their development workflow, where they could
run tests against other implementations at will.

2.2 QIR components

As shown in figure 3, QIR is a test harness that uses three
Docker containers [10]: a client container, a server container,
and a network container. Docker Compose [11] is used to
orchestrate the three containers. QUIC implementers pub-
lish endpoint containers running their implementations on
DockerHub [12], and each container can be instantiated as a
server or as a client depending on the implementation’s role
in a test (the role is provided as an environment variable).

QUIC servers are expected to receive packets on UDP port
443 on a pre-specified IP address, configured as the address
of the server container’s virtual network interface. QUIC
clients are expected to send requests to this pre-configured
address.

client network server
Quic ns-3 Quic
Implementation Implementation
#1 #2

Figure 3: Network setup used in QIR tests. Boxes repre-
sent Docker containers [10] running a QUIC client, the net-
work simulator, and a QUIC server. IP addresses and routes
are configured such that packets between the client and the
server have to pass through the network container, where
ns-3 [4] is used to simulate different network conditions.

The network interfaces of the server and client containers
are on different IP subnets, to prevent the host operating
system from forwarding packets directly between the two
endpoint containers, and to force the packets to be forwarded
through the network container instead. The network con-
tainer has two network interfaces connecting to the server

SIGCOMM EPIQ Workshop, 2020

and client containers. All traffic between the endpoint con-
tainers passes through the network container, where various
network conditions can be simulated.

2.3 Using ns-3 for network simulation

Within the network container, QIR uses the ns-3 network
simulator [4], running in real-time simulation mode, to read
and write packets from and to the two network interfaces,
and to simulate a network topology between them. We chose
ns-3 for the ease with which we could introduce new behav-
iors in the network simulation for various tests (see Section
3 for examples). We were also aware of its rich set of channel
propagation and mobility models for different wireless and
wired links, which we wanted to explore. Importantly, ns-3
allowed packets from the real world to be introduced into
the simulated world and vice-versa. This would allow us to
simulate any network condition or topology between the
client and the server.

After much testing, we chose 10 Mbit/s as the bandwidth
of the bottleneck link of the simulated network to ensure that
a commodity laptop could run the QIR setup without using
up all its compute power. This seems low, but we argue that
it is adequate for our purposes'. For testing interoperability,
any reasonable bandwidth would work. For testing perfor-
mance, we would introduce competing traffic and network
pathologies, and we would have expectations of how well
an implementation ought to perform. We acknowledge that
this setup does not allow for testing an implementation in
a high-bandwidth environment. We are considering using
a more compute-efficient simulator, such as Linux’s netem,
for such tests, but we leave that to future work.

In the simplest configuration, QIR uses ns-3 to simulate
a fixed-bandwidth link with a finite queue size. Despite its
simplicity, this setup exercises a fair bit of QUIC’s machin-
ery. Using a fixed-bandwidth link requires QUIC congestion
controllers to determine the available bandwidth, typically
by filling the queue at the bottleneck and reacting to any re-
sulting packet loss. Other scenarios include inducing packet
loss to test QUIC’s loss recovery, both during the handshake
and later in the connection; inducing packet corruption to
test QUIC’s ability to discard invalid packets; and temporary
black-holing of the connection, to test QUIC’s recovery from
temporary outages.

3 QIR TESTS

A test case in QIR creates a scenario and observes the behavior
of the QUIC endpoints, where a scenario is a specific network
topology and behavior. For example, a simple test case could

1Our investigation showed inefficiencies within ns-3 to cause this limitation,
and we believe that performance optimization work within ns-3 can help.
We leave this for future work.

Marten Seemann and Jana lyengar

require a client to download a specific object from the server.
This would mean that the client would have to successfully
complete a QUIC handshake with the server, send a request
for the object, process the server’s response, and receive and
store the object. More complex test cases require the client
to establish a connection, receive a TLS Session Ticket [13]
and transfer objects on a subsequently established 0-RTT
connection.

In this section, we first describe QIR’s workflow at run-
time, followed by descriptions of a few exemplary tests.
With the exception of the HTTP/3 test, all tests in QIR use
a stripped-down HTTP/0.9 request-response format mul-
tiplexed onto QUIC streams for transferring objects. This
allows for testing the QUIC protocol separately from HTTP/3.
Furthermore, it allows QUIC implementations to participate
in interoperability testing without requiring them to imple-
ment HTTP/3.

3.1 Scenarios

In QIR, a scenario represents a network topology and behav-
ior, that we implement in C++ as a part of ns-3. QIR currently
includes the following four scenarios, which are used in the
tests it implements:

o simple-p2p: A simple point-to-point link with a speci-
fied bandwidth, delay, and queue size.

e drop-rate: A simple point-to-point link with a specified
bandwidth, delay, queue size, and a configurable packet
drop rate.

e corrupt-rate: A simple point-to-point link with a speci-
fied bandwidth, delay, queue size, and a configurable
rate at which packets are corrupted (a random byte in
the first fifty bytes of the QUIC packet is corrupted).

e blackhole: A simple point-to-point link with a specified
bandwidth, delay, queue size, and configurable periods
of time during which the link is either forwarding or
dropping packets.

3.2 QIR Workflow

Figure 4 shows QIR’s workflow for each test. QIR first gen-
erates objects to be transferred for the test. These objects
are of random sizes and content, and they are made avail-
able in the server container via a mounted directory. The
client is expected to download these objects and store them
into a separate mounted directory. At the end of each test,
this setup allows QIR to access and validate the number and
content of the downloaded objects.

In addition to these two directories, QIR sets up log direc-
tories to be used by the client and the server for recording
their logs. Endpoints can record log files in their preferred
logging format within the endpoint containers, and these
are exported and made available by QIR after the test has

Automating QUIC Interoperability Testing

Prepare directories to mount into
containers

¥

[Start containers }

Generate objects to transfer;
Setup

Run Test *

[Wait for test completion

: V

Check container exit code;
Process packet captures;
Compare transferred objects

Y

Teardown { [Copy logs out from all containers }

Determine
Outcome

Figure 4: QIR workflow for running a test

completed. To facilitate analysis and debugging, the net-
work container maintains various logs and detailed packet
captures at both network interfaces. Some implementations
export TLS secrets [14], which allows later decryption and
analysis of these packet captures.

QIR then starts the containers up and waits until the test
completes (or times out). QIR provides necessary configu-
ration information, such as the name of the test and the
names of the objects to download, to the endpoint contain-
ers using environment variables that are available within
the containers. Test completion is indicated by at least one
container shutting down. In most cases, this is the client
shutting down after it has downloaded all objects. QIR then
checks container exit codes to determine the implementa-
tions’ self-reported outcomes of the test. If the containers
claim to have completed the test successfully, QIR analyzes
the packet captures and validates the downloaded objects
against the ones that it generated.

3.3 Handshake Test

In this simple test, a client is expected to do the following:

(1) establish a QUIC connection with the server at the
statically configured IP and port;

(2) request a single (small) file, the URL for which is spec-
ified in the REQUEST environment variable; for exam-
ple, https://server/xqsdfiuywerf; and

(3) record the received object in a file with the same name,
in the /downloads directory in the client container.

The server is expected to accept incoming connections
and respond to requests using objects located in the /www
directory in the server container.

SIGCOMM EPIQ Workshop, 2020

In this test, QIR first generates and stores a 1KB file with
a random name in the server’s /www directory. Then, all
three containers are brought up. The client is expected to
finish the steps listed above and then exit, at which point QIR
compares the original and the downloaded files, copies logs
from the /logs directory in all three containers, and copies off
packet traces from the network container. If the validation
of the downloaded file is successful, the test is a success. If
the test concludes in any other manner, it is considered to
have failed.

3.4 Retry Test

QUIC’s Retry mechanism is designed for a server to validate
the client’s IP address prior to committing any state to the
connection. This test extends the Handshake test to exercise
the Retry mechanism. As in the Handshake test, the client
requests an object from the server. The server is expected to
validate the client’s IP address with a Retry packet prior to
accepting the connection attempt.

In addition to the steps performed for the Handshake test,
QIR needs to avoid misbehaving servers or clients from gam-
ing this test. That is, QIR needs to verify that a Retry packet
was in fact sent, and that the client’s post-Retry handshake
attempt included information from the received Retry packet.
To perform this verification, QIR programmatically exam-
ines packet traces to confirm that a retry did in fact occur.
To examine packet traces, QIR uses pyshark [15], a Python
wrapper around the Wireshark protocol analyzer [16].

3.5 Multiplexing Test

In the transport parameters sent during the handshake, QUIC
endpoints declare the highest stream ID that the peer is al-
lowed to open. This is used to limit the amount of resources
dedicated to stream handling at any given time. If an end-
points wants to open more streams than this limit, it has to
wait until the peer increases the stream ID limit. Typically,
implementations increase the stream ID limit after previ-
ously used streams are closed and any resources associated
with those stream has been freed.

The Multiplexing test extends the Handshake test to ex-
ercise QUIC’s stream multiplexing features. QIR generates
2000 small files (of 32 bytes each). Since servers commonly
set a stream ID limit that is lower than 2000, clients will have
to request a first batch of files, wait for the completion of
the transfer and the increase of the stream ID limit from the
server, and then issue requests for the next batch of files.

Due to the large number of files transferred, this test is
particularly difficult during manual interoperability testing.

SIGCOMM EPIQ Workshop, 2020

3.6 Performance Tests

The Throughput test is the first of QIR’s performance tests.
This test is exactly the same as the Handshake test with the
following modifications: the object transferred is large in
size, and the test is repeated a number of times to show some
statistical confidence in the results. Performance tests are
not simply success or failure tests; the output of such a test
is an expected value (in this case, throughput), with an error
margin.

client network server
Quic QuiC
Implementation Implementation

#1 - #2

iPerf sender

iPerf receiver

Figure 5: Network Setup for the cross-traffic test. In addi-
tion to the containers in Figure 3, this setup has two addi-
tional containers running an iPerf sender and an iPerf re-
ceiver to generate TCP traffic. TCP traffic competes with the
QUIC traffic for bandwidth of the bottleneck link.

QIR allows building of more sophisticated performance
tests. The second performance test reports on the server’s
throughput when competing at a bottleneck link with a con-
current TCP flow. As shown in figure 5, we add two addi-
tional containers to the setup used so far, each running an
iPerf [17] client or server, to generate TCP traffic. This TCP
traffic uses the Cubic congestion controller and shares the
ns-3-simulated bottleneck link with the QUIC traffic under
observation. For perfect flow-fairness, TCP and QUIC are
expected to each use half of the bottleneck link’s capacity.
The interop runner computes the throughput of each flow
from analyzing packet captures after completion of the test.

These are just four of the fourteen tests that are currently
part of the QIR test suite, with many more tests under de-
velopment. Scaling the number of interoperability tests is
one of QIR’s key benefits, and we expect that increasing this
number will accelerate the development and maturing of all
QUIC implementations.

4 RELATED WORK

While there has been a lot of work in network simulation and
emulation, there is very little work on interoperability frame-
works. The closest related work to ours is QUIC Tracker [18].
This project uses a custom-built QUIC client to run tests
against public QUIC servers, to test their compliance to the

Marten Seemann and Jana lyengar

QUIC specification. Similarly, the BoringSSL TLS implemen-
tation includes a separate endpoint that is used for running
compliance tests against TLS endpoints [19]. These are both
examples of compliance testing. QIR does not implement a
QUIC endpoint, but provides a framework for interoperabil-
ity testing across all participating implementations.

5 CONCLUSIONS AND FUTURE WORK

While interoperability testing has been one of the hallmarks
of open standards and protocol development, the process
itself remains woefully inadequate and limited. Using simple
container orchestration and network simulation, QIR makes
it possible to meet the constraints of implementers while
automating this process for on-demand, continuous, and
repeatable interoperability and performance testing.

QIR has considerably reduced the amount of time that
implementers need to spend on setting up and running in-
teroperability tests. This is now a fixed amount of manual
effort for each implementer, irrespective of the number of
other implementations. QIR is now supported by ten QUIC
implementations, with some more forthcoming, and it has al-
ready become a part of the development workflow of several
implementers.

We are planning on expanding the framework presented
here to include more tests. Test cases of interest are:

e A high bandwidth test, testing QUIC flows at
bandwidths up to 100 Mbit/s.

e A handshake latency test, measuring the time to
handshake completion at various packet loss rates,
averaged over multiple runs.

o A test case simulating a NAT rebinding, verifying that
servers are able to handle this situation gracefully.

o A test case in which the client performs a connection
migration from one network address to the other.

e A more sophisticated ns-3 scenario simulating
characteristics of WiFi and cellular networks.

e A performance comparison between HTTP/2 and
HTTP/3, using realistic web pages.

In addition to enabling implementers to run interoperabil-
ity tests as frequently as they like, QIR makes it possible to
run continuous tests across all implementations. We now
run the entire suite of tests on a dedicated server to gener-
ate an interoperability matrix as frequently as once per day;
see [2]. Using a web interface, this matrix shows the results
of a complete interoperability test, with access provided to
logs and packet captures for debugging purposes.

While QIR was developed for testing QUIC implementa-
tions, the central ideas, components, and even code can be
re-purposed for testing other protocols as well. We hope to
see this happen in the future.

Automating QUIC Interoperability Testing

REFERENCES

[1] QUIC Interop Runner.
quic-interop-runner.

[2] QUIC Interop Runner Web Interface. https://interop.seemann.io.

[3] J. Iyengar and M. Thompson. QUIC: A UDP-Based Multiplexed
and Secure Transport. February 2020. https://tools.ietf.org/html/
draft-ietf-quic-transport-27.

[4] The ns-3 Network Simulator. https://www.nsnam.org/.

[5] S. Bradner. RFC 2026: The Internet Standards Process — Revision 3.
October 1996.

[6] R. Stewart. RFC 4960: Stream Control Transmission Protocol. Septem-
ber 2007.

[7] QUIC Interop Wiki. https://github.com/quicwg/base-drafts/wiki/
17th-Implementation-Draft.

[8] QUIC Working Group. https://quicwg.org.

[9] QUIC Interop Runner Documentation.
marten-seemann/quic-interop-runner/.

https://github.com/marten-seemann/

https://github.com/

SIGCOMM EPIQ Workshop, 2020

[10] Docker. https://docker.com.

[11] Docker Compose. https://docs.docker.com/compose/.

[12] Docker Hub. https://hub.docker.com.

[13] E. Rescorla. RFC 8446: The Transport Layer Security (TLS) Protocol
Version 1.3. August 2018.

[14] NSS Key Log Format. https://developer.mozilla.org/en-US/docs/
Mozilla/Projects/NSS/Key_Log_Format.

[15] pyshark: Python wrapper for tshark. https://kiminewt.github.io/
pyshark/.

[16] Wireshark protocol analyzer. https://www.wireshark.org/.

[17] iPerf - The ultimate speed test tool for TCP, UDP and SCTP. https:
//iperffr/.

[18] M. Piraux, Q. De Coninck, and O. Bonaventure. Observing the Evolu-
tion of QUIC Implementations. August 2018.

[19] Boring SSL test runner. https://boringssl.googlesource.com/boringssl/
+/refs/heads/master/ssl/test/runner/.

