
Merkle-CRDTs (DRAFT)

Merkle-DAGs meet CRDTs

Héctor Sanjuán1, Samuli Pöyhtäri2, and Pedro Teixeira1

1Protocol Labs
2Haja Networks

May, 2019

Abstract

We study Merkle-DAGs as transport and persistence layer for Con-
flict free Replicated Data Types (CRDTs), coining the term Merkle-
CRDTs and providing an overview of the different concepts, proper-
ties, advantages and limitations involved. We show how Merkle-DAGs
can act as logical clocks giving Merkle-CRDTs the potential to greatly
simplify the design and implementation of convergent data types in
systems with weak messaging layer guarantees and a very large num-
ber of replicas. Merkle-CRDTs can leverage highly scalable distributed
technologies like DHT and pub/sub algorithms running underneath to
take advantage of the security and de-duplication properties of content-
addressing. Examples of such content systems could include peer-to-
peer content exchange and synchronisation applications between op-
portunistically connected mobile devices, IoT devices or user applica-
tions running in a web browser.

Keywords: CRDTs, Merkle DAGs, Distributed Systems, IPFS,
logical clocks.

1 Introduction

The advent of blockchain technology has generalized the use of peer-to-peer
networking along with cryptographically directed, acyclic graphs, known as
Merkle-DAGs, to implement globally distributed and eventually consistent
data structures in applications such as cryptocurrencies. In these systems,
the Merkle-DAG is a content-addressed data structure used to provide both
causality information and self-verification of objects that can be easily and
efficiently shared in trustless peer-to-peer environments. The need to main-
tain and apply certain rules to add new blocks to the blockchains in adver-
sarial scenarios usually warrants the use of consensus algorithms.

1



A different approach to obtaining eventual consistency in a distributed
system is by using Conflict-Free Replicated Data Types (CRDTs) [26, 27].
CRDTs are useful in non-adversarial scenarios, where the participating repli-
cas are known to behave correctly. CRDTs rely on some properties of the
data objects themselves that enable convergence towards a global, unique
state without the need for consensus. CRDTs come in two main flavours:
state-based CRDTs1—where the states of replicas form a join-semilattice
and are merged under the guarantees afforded by it— and operation-based
CRDTs2 —in which commutative operations are broadcast and applied to
the local state by every replica. Additionally, δ-CRDTs are an optimization
of state-based CRDTs to reduce the size of the payloads sent by the replicas.

Both Merkle-DAGs and CRDTs provide interesting properties: the for-
mer allows distributed systems to take advantage of a content-addressing
layer for the resolution/discoverability and self-verification of data regard-
less of the source; the latter allows global-state convergence without the need
of —usually complex and expensive— consensus mechanisms. By embed-
ding CRDT objects inside Merkle-DAG nodes, we obtain the best properties
of both worlds, that is, we obtain a convergent system that can leverage the
DAG as a logical clock. This logical clock is provided and built by every
replica, without the need for coordination and which can operate undis-
rupted in lose network environments with no delivery guarantees. As we will
see, Merkle-CRDTs are fully agnostic to how the system announces and dis-
covers data among replicas, thus being able to leverage different approaches
like those provided by DHT and PubSub mechanisms without being tied to
a particular version of them.

We conceive this approach as extremely useful for fully distributed peer-
to-peer applications where the replicas are writers to a common dataset,
usually in the form of a database. For example, a distributed and fully
replicated file-system, chat group or package repository index. We have
found that using IPFS (see Section 2.5) as a content-addressed, peer-to-
peer decentralised file system and content distribution network, the system
scales well to the order of thousands of replicas which can opportunistically
join and depart – a very common condition when working with mobile and
other low-power devices.

IPFS provides a content-addressed peer-to-peer filesystem [7] which sup-
ports seamless syncing of Merkle-DAGs with arbitrary formats and payloads,
making it a robust building block for different types of distributed applica-
tions like PeerPad3 or OrbitDB4, both powered by CRDTs and IPFS.

In this paper we formalize what we refer to as Merkle-CRDTs. The goal

1Also known as Convergent CRDTs or CvRDTs.
2Also known as Commutative CRDTs or CmRDTs.
3PeerPad is realtime p2p collaborative editing tool (https://peerpad.net).
4OrbitDB is a peer-to-peer database for the decentralized web (https://github.com/

orbitdb/orbit-db).

2



is to provide an overview of their properties, advantages and limitations, so
that it can set the ground layer for future research and optimizations in the
space.

As such the contributions of this paper are as follows:

• We define Merkle-Clocks, Merke-DAG-based logical clocks, to repre-
sent causality information in a distributed system. Embedding causal-
ity information using Merkle-DAGs is at the core of cryptocurrencies
and source control systems like Git, but they are rarely considered
separately as a type of logical clock. We demonstrate that Merkle-
Clocks can be used in place of other logical clocks traditionally used by
CRDTs like version vectors and vector clocks. We show that Merkle-
Clocks can in fact be seen as CRDT objects themselves, which can be
synced, merged and for which we can formally prove eventual consis-
tency across different replicas.

• We define Merkle-CRDTs as a general purpose transport and per-
sistency layer for CRDT payloads which leverages the properties of
Merkle-Clocks, using the DAG-Syncer and the Broadcaster to provide
per-object causal consistency by design. This enables the use of sim-
ple CRDT types in systems with weak messaging layer guarantees and
large number of replicas.

The rest of the paper is organised according to the below. In Section 2,
we start by introducing relevant background concepts and known research,
in a way that can be easily understood by the reader, even when first ap-
proaching the field.

In Section 3, we expose the characteristics of our system model and
introduce the facilities needed to store and sync Merkle-CRDTs. These are
the DAG-Syncer and the Broadcaster components, both of them agnostic
to the data payloads. While these components are conveniently available in
the IPFS stack, we present them as an implementation-agnostic interface.

In Section 4, we introduce Merkle-Clocks, and building on the previous
sections, in Section 5 we define Merkle-CRDTs. We discuss how different
CRDT payloads (whether operation-based, state-based or δ-based) bene-
fit from Merkle-CRDTs. Finally, we describe some of the limitations and
inefficiencies of Merkle-CRDTs and introduce techniques to overcome them.

2 Background

2.1 Eventual consistency

The Consistency, Availability, Partition-Tolerance theorem, most widely
known as the “CAP Theorem” [8] establishes that, in a distributed system, it

3



is impossible to simultaneously obtain consistency, availability and partition-
tolerance when it comes to maintaining a shared state.

This can be intuitively understood: if all replicas in the system accept
arbitrary writes (Availability condition) during a network partition that
keeps them from contacting one another (Partition Tolerance condition),
there is no way that they can synchronize to a consistent state (Consistency
condition). If the replicas instead stop accepting writes, they will maintain
consistency but cannot be considered to be available. Consequently, replicas
in a system in which partitions are tolerated cannot remain both consistent
and available.

Since all three properties would be ideal to have in a distributed system,
one way to get around the problem is to relax the consistency part and
replace it with eventual consistency (EC)5 [28], meaning that, at a certain
moment, the state may not be the same across replicas —in fact it may
be completely different— but, given enough time and perhaps after network
partitions, downtimes and other eventualities have been resolved, the system
design will ensure that the state becomes the same everywhere.

The main weakness of the eventual consistency definition is that it offers
no guarantees as to when the shared state will converge or how much the
individual states will be allowed to diverge until then6. Strong eventual
consistency (SEC) addresses these issues by establishing an additional safety
guarantee: if two replicas have received the same updates, their state will
be the same.

Consensus algorithms or, more important to this paper, Conflict-Free
Replicated Data Types (CRDTs) are ways to achieve (strong) eventual con-
sistency in a distributed system.

2.2 Merkle DAGs

A Direct Acyclic Graph (DAG) is a type of graph in which edges have direc-
tion and cycles are not allowed. For example, a linked list like A→ B → C
is an instance of a DAG where A references B and so on. We say that B is
a child or a descendant of A, and that node A has a link to B. Conversely
A is a parent of B. We call nodes7 that are not children to any other node
in the DAG as the root nodes.

A Merkle-DAG is a DAG where each node has an identifier and this is
the result of hashing the node’s contents —any opaque payload carried by
the node and the list of identifiers of its children— using a cryptographic
hash function like SHA256. This brings some important considerations:

5Also known as optimistic replication.
6EC only provides a liveness guarantee: the system will not become stuck when making

progress to converge.
7Throughout the paper, we use the term replica to refer to the physical machine of a

network node and node to refer to bundled content addressed by a single identifier.

4



a) Merkle-DAGs can only be constructed from the leaves, that is, from
nodes without children. Parents are added after children because the
children’s identifiers must be computed in advance to be able to link
them.

b) every node in a Merkle-DAG is the root of a (sub)Merkle-DAG itself,
and this subgraph is contained in the parent DAG8.

c) Merkle-DAG nodes are immutable. Any change in a node would alter
its identifier and thus affect all the ascendants in the DAG, essentially
creating a different DAG.

Identifying a data object (like a Merkle-DAG node) by the value of its
hash is referred to as content addressing. Thus, we name the node identifier
as Content Identifier or CID.

For example, in the previous linked list, assuming that the payload of
each node is just the CID of its descendant would be: A = Hash(B)→ B =
Hash(C)→ C = Hash(∅). The properties of the hash function ensure that
no cycles can exist when creating Merkle-DAGs9.

Merkle-DAGs are self-verified structures. The CID of a node is univo-
cally linked to the contents of its payload and those of all its descendants.
Thus two nodes with the same CID univocally represent exactly the same
DAG. This will be a key property to efficiently sync Merkle-CRDTs without
having to copy the full DAG, as exploited by systems like IPFS discussed
later in Section 2.5.

Merkle-DAGs are very widely used. Source control systems like Git
[11] and others [6] use them to efficiently store the repository history, in a
way that enables de-duplicating the objects and detecting conflicts between
branches.

In distributed databases like Dynamo [13], Merkle-Trees are used for
efficient comparison and reconciliation of the state between replicas. In
Hash Histories [16], content-addressing is used to refer to a Merkle-Tree
representing a state10.

Merkle-DAGs are also the foundational block of blockchains —they can
be seen as a Merkle-DAG with a single branch— and their most common

8Merkle-DAGs are similar to Merkle Trees [20] but there are no balance requirements
and every node can carry a payload. In DAGs, several branches can re-converge or, in
other words, a node can have several parents, or be part of several Merkle DAGs.

9Hash functions are one way functions. Creating a cycle should then be impossibly
difficult, unless some weakness is discovered and exploited.

10Hash Histories use a DAG to track the history of events in every replica. They
decouple the size of causal information from the number of replicas like Merkle-Clocks,
later presented here, but without using Merkle-DAGs. The nodes carry the hash of the
state and an epoch number, in order to distinguish states which share the same hash at
different moments in the history. With this information, replicas can establish if their
versions of the state are dominant, exploit coincidental causality or extract deltas for
diffing and merging.

5



application: cryptocurrencies. Cryptocurrencies like Bitcoin [21] benefit
from the embedded causality information encoded in the chain: transactions
in a block deeper in the chain always happened before those of earlier blocks.
One of the main issues in cryptocurrencies is to make all participating peers
agree about the tip/head/root of the chain. Among other things, the non-
commutative nature of some transactions, like those originating from the
same wallet11, requires a consensus mechanism which enforces that only
valid blocks become the new roots.

There are also DAG-based cryptocurrencies12 like DAG13, Byteball14 or
IOTA15. Like Merkle-CRDTs, they use a full-featured Merkle-DAG instead
of a single chain. But, similarly to the rest, they end up needing to order
conflicting transactions to ensure they follow the rules.

One commonality in many of these systems is that the Merkle-DAG
implicitly embeds causality information16. The DAG can show that a certain
transaction precedes another, or that a Git commit needs to be merged
rather than fast-forwarded. This will be one of the properties that we use
in Merkle-CRDTs and that this paper makes explicit and puts in contrast
with other causality-encoding mechanisms known as logical clocks.

2.3 Logical clocks

The design of causally-convergent systems involves the reconciliation of di-
verging state versions among different replicas when, for example, events
occur concurrently. This requires that we are able to identify whether two
events actually happened concurrently and whether two states are actually
different because of concurrent updates or other reasons, such as one replica
having received more updates.

The problem is, essentially, tracking the order in which different events
happened. For example, given multiple writes of a value to a register in
different replicas, we would expect the final value in the registry to be that
of the last write.

11A wallet must necessarily receive currency before being allowed to spend it.
12Also called Blockless cryptocurrencies
13https://dagcoin.org.
14https://byteball.org. Byteball’s DAG [12] introduces the notion of main chains

to order otherwise non-serial nodes in the DAG. How to build those chains in a way that
they form a stable global view of causality is the main body of the Byteball specification.

15https://iota.org. In IOTA’s Tangle [24], each node in the DAG represents a trans-
action which approves the transactions of its children and is approved by its parent. If a
transaction B is part of a subDAG of A, then A indirectly approves B. The tip selection
algorithm (which selects which transactions to approve) and the requirement that each
peer needs to solve a cryptographic puzzle before issuing new transactions are the keys to
establish order among concurrent transactions.

16The term Causal Trees denotes the same thing but refers to non-merkle tree structures
and we rarely found it in literature related to distributed computing.

6



Ideally, we should be able to order all the events in the system17 so that
we can identify which was the actual last update to the register.

Tagging events with timestamps can give us this information: if all events
are timestamped, any replica may establish the order in which they hap-
pened and use that information to decide what the final state should look
like. However, in distributed systems, it is not possible to use timestamps
reliably [22], as not every replica can be perfectly synced to a global time.
“Wall clocks” can also easily be simulated or spoofed, which is problematic
in peer-to-peer systems with no trust involved.

Logical clocks are the alternative to global time. They provide ways to
encode causal information between events known to different actors in a
distributed system.

The basic idea is that, although we may not know the order in which all
events happened globally, every replica knows at least the order of events
issued by itself. Any other replica that receives that information will then
know that any events later issued by itself come after those. This is, in
essence, what is known as causal history.

Logical clocks are representations of causal histories [5] which provide a
partial ordering between events. That is, given two events a and b, logical
clocks should be able to tell us if a happened before b (a→ b), or vice-versa
(b→ a), or if both a and b happened concurrently (a ‖ b)18.

The practical implementation of logical clocks usually involves metadata
which travels attached to every event in the system. One of the most com-
mon forms of logical clocks are version vectors [23]: every replica maintains
and broadcasts a vector that tracks on which version the state of all the
replicas is. When a replica performs a modification of the state, it increases
its version. When a replica merges a state from a different replica, it takes
the highest between the local versions and the versions provided by the other
replica along with the event. Thus, given two events a, b, with version vec-
tors Va, Vb: a → b if Vai ≤ Vbi for each position i in the vectors. If a 6→ b
and b 6→ a, by that definition, a and b are concurrent.

As we see, version vectors are compact because they do not need to store
the full causal history but merely a number indicating how long the history

17This means establishing a total strict order for all the events.
18We take a number of shorcuts in this description. Logical clocks were originally

described by Lamport [18] as a function which, for every event, returns a value so that:

a→ b⇒ Clock(a) < Clock(b)

While this can already be used to obtain a total order among the events in a system, as
shown by the Lamport scalar clock, above we refer to logical clocks that meet the Strong
Clock condition (which is two-way):

a→ b⇔ Clock(a) < Clock(b)

7



is for every replica. Version vectors depend on the number of replicas, so
they may need further optimizations to work well in scenarios with many
replicas or where the number of replicas is not stable.

In addition to many proposed improvements, there are multiple types
of logical clocks that are similar to version vectors but fulfil different needs
or address some of their shortcomings: vector clocks [15], bounded version
vectors [1], dotted version vectors [25], tree clocks [19] or interval tree clocks
[2] are some of them.

In this paper we formalize that a Merkle-DAG can act as a logical clock
and therefore replace some of the clocks above. Merkle-Clocks, as we will
show, provide a different set of properties but encode the same causal infor-
mation about events.

2.4 Conflict-Free Replicated Data Types (CRDTs)

CRDTs are data types which provide strong eventual consistency among
different replicas in a distributed system by requiring certain properties from
the state and/or the operations that modify it. Additionally, CRDTs also
feature monotonicity. The concept of monotonicity applied to data types is
the notion that every update is an inflation, making the state grow, not in
size, but in respect to a previous state. This implies that there will always
be an order between states19. Monotonicity implies that rollbacks on the
state are not necessary regardless of the order in which updates happen.

There are two prominent types of CRDTs: state-based and operation-
based CRDTs. In state-based CRDTs, all the states in the system —that is,
the states in different replicas and different moments— form a monotonic
join-semilattice. That means that, for any two states X and Y , both can
be ”joined”20 (t) and the result is a new state corresponding to the Least-
Upper-Bound (LUB) of the two [26]. In other words, every modification
made to a state by a replica must be an inflation and the union of two
states X and Y is the minimal state capable of containing both X and
Y and not more (the LUB). A join-semilattice is thus a partially ordered
set21 and its LUB is the smallest state capable of containing all the states
in the semilattice. This implies that the t operation must be idempotent
(XtX = X), commutative (XtY = Y tX) and associative ((XtY )tZ =
X t (Y t Z)).

Replicas in a state-based CRDTs modify their state —or inflate it— and
broadcast the resulting state to the rest of replicas22. Upon receiving the

19A good example is that a CRDT counter which can be increased and decreased (known
as PN counter) is necessarily implemented using two counters which can only be increased.

20Also denoted ”union” or ”merge”.
21See https://en.wikipedia.org/wiki/Partially_ordered_set.
22An important note here is that CRDTs are just data types. The transmission of

CRDT objects between replicas goes beyond it. Some CRDTs are, by design, better
suited to some broadcasting mechanisms than others and can facilitate optimizations such

8



state, the other replicas merge it with the local state23. The properties of
the state ensure that, if the replicas have correctly received the states sent
by other replicas —and vice-versa—, they will eventually converge.

Operation-based CRDTs [26], on the other side, do not enforce any prop-
erty on the state itself but on the operations used to modify it, which must
be commutative24. The replicas broadcast the operations and not the states.
If two operations happen at the same time in two replicas, the order in which
other replicas apply them does not matter: the resulting states will be the
same.

It follows that, if an operation broadcast does not arrive to a replica —for
example due to a network failure—, that replica will never be able to apply it
and the states will not converge. Thus, unlike state-based CRDTs, eventual
consistency in operation-based CRDTs requires a reliable messaging layer
that eventually delivers all operations [4]. Additional constraints may be
necessary, for example, if operations are not idempotent: in that case the
messaging layer should ensure that each operation is delivered exactly once.
Some operation-based CRDTs may also require causal delivery: if a replica
sends operation a before b (a→ b), then a should always be delivered before
b to a different replica.

These properties and requirements in both state and operation-based
CRDTs ensure per-object causal consistency : updates to a state will main-
tain the causal relations between them. For example, in a Grow-Only Set
(G-Set), when a replica adds element A and then element B, every other
replica will never have a set where B is part of the set but A is not25.

Logical clocks, as seen in the previous section, are commonly used to im-
plement CRDT types: they are useful to identify when two updates happen
concurrently and need merging.

CRDTs have been successfully used and optimized in different applica-
tions and distributed databases, Basho’s Riak [9, 10] being one of the most
prominent examples26.

2.5 IPFS: The InterPlanetary File System

IPFS [7] is a content-addressed, distributed filesystem. IPFS uses a Dis-
tributed Hash Table (DHT) to announce and discover which replicas (or

as broadcasting only to a random subset rather than to every replica.
23The merge can take several forms. In a CRDT counter, merging involves taking the

maximum between the local and the remote values.
24At least in regard to a different operation issued at the same time (concurrently).
25This is clear for an operation-based implementation of a G-Set (assuming causal de-

livery of the operations). The state-based implementation of a G-Set involves sending the
full set. Thus, the event adding B is a set which already contains A: there will not be a
set where B is present but not A, even if the event that added A was lost or arrives later.

26https://github.com/ipfs/research-CRDT/issues/40 provides other examples.

9



peers) provide certain Merkle-DAG nodes. It implements a node-exchange
protocol called “bitswap” to retrieve DAG nodes from any provider.

IPFS is built on top of libp2p27, a modular network protocol stack for
P2P networks, which additionally provides efficient broadcasting mecha-
nisms primarily based on publish-subcribe models28.

IPFS also uses IPLD, the InterPlanetary Linked Data Format29, a frame-
work to describe Merkle-DAGs with arbitrary node formats and support for
multiple types of CIDs30, making it very easy to create and sync custom
DAG nodes.

These features make IPFS a suitable layer on which to implement Merkle-
CRDTs, as it provides the necessary mechanisms to discover, route and
announce content in potentially very large networks.

3 System model & Assumptions

Our Merkle-CRDT approach is intended to be both simple and facilitate
the use of CRDTs in peer-to-peer distributed systems with large number of
replicas and no message delivery guarantees (i.e., unreliable transports).

We assume the presence of an asynchronous messaging layer which pro-
vides a communication channel between separate replicas. This channel is
managed by two facilities which every replica exploits: the DAG-Syncer and
the Broadcaster components (defined below).

We assume that messages can be dropped, reordered, corrupted or du-
plicated. It is not necessary to know beforehand the number of replicas
participating in the system. Replicas can join and leave at will, without
informing any other replica. There can be network partitions but they are
resolved as soon as connectivity is re-established and a replica broadcasts a
new event.

Replicas may have durable storage, depending on their own requirements
and data types. Using Merkle-CRDTs new replicas and crashed replicas
without durable storage will be able to eventually re-construct the complete
state of the system as long as at least one other replica is in the latest system
state.

3.1 The DAG-Syncer component

A DAG-Syncer is a component which enables a replica to obtain remote
Merkle-DAG nodes from other replicas given their content identifiers (CIDs)

27https://libp2p.io).
28As of this writing, Floodsub and gossipsub (https://github.com/libp2p/

go-libp2p-pubsub).
29For specifications and description, see https://ipld.io.
30The Multiformats project provides self-describing values for future-proofing (https:

//multiformats.io/).

10



and to make its own nodes available to other replicas. Since a node contains
links to their direct descendants, given the root node’s CID, the DAG-Syncer
component can be used to fetch the full DAG by following the links to
children in each node. Thus, we can define the DAG-Syncer as follows:

Definition 1. (DAG-Syncer). A DAG-Syncer is a component with two
methods:

• Get(CID) : Node

• Put(Node)

We do not specify any more details such as how the protocol to announce
and retrieve nodes looks like. Ideally, the DAG-Syncer layer should not
impose any additional constraints on the system model. Our approach relies
on the properties of the DAG-Syncer and Merkle-DAGs to tolerate all the
network contingencies described above.

3.2 The Broadcaster component

A Broadcaster is a component to distribute arbitrary data from one replica
to all others31. Ideally, the payload will reach every replica in the system,
but this is not a requirement for every broadcast message:

Definition 2. (Broadcaster). A Broadcaster is a component with one
method:

• Broadcast(Data)

3.3 IPFS as a DAG-Syncer and Broadcaster component

The components above can be realised by using the InterPlanetary File
System (IPFS) [7] (as introduced in Section 2). IPFS can act as the DAG-
Syncer, while one of the PubSub mechanisms provided by its libp2p layer
can perform the tasks of the Broadcaster component.

Such an implementation should allow extreme scalability of the replica
set in general. The peers in the network do not need to be fully connected
to everyone else and the system is extremely modular and configurable to
fit both small devices and large storage servers. The choice of settings and
implementations will affect the performance of the system under different
circumstances and network topologies, but is independent from the Merkle-
CRDT objects and datatype as long as it provides the necessary components.

31The broadcasting strategy may or may not involve delivering the messages directly to
other replicas. Messages could also be relayed.

11



4 Merkle-Clocks

4.1 Overview

A Merkle-Clock M is a Merkle-DAG where each node represents an event.
In other words, given an event in the system, we can find a node in this
DAG that represents it and that allows us to compare it to other events.

The DAG is built by merging other DAGs (those in other replicas) ac-
cording to some simple rules. New events are added as new root nodes
(parents to the existing ones)32.

For example, given Mα and Mβ (α and β being the single root CIDs in
those DAGs33):

1. If α = β no action is needed, as they are the same DAG.

2. else if α ∈Mβ, we keep Mβ as our new Clock, since the history in Mα

is part of it already. We say that Mα < Mβ in this case.

3. else if β ∈Mα, we keep Mα for the same reason. We say that Mβ <
Mα in this case.

4. else, we merge both Clocks by keeping both DAGs as they are and
thus having two root nodes, those referenced by α and β. Note that
Mα and Mβ could be fully disjoint or not, depending on whether they
share some of their deeper nodes. If we wish to record a new event,
we can do so by creating a new root γ with two children, α and β.

We can already see that, by looking if one Merkle-Clock is included in an-
other, we are introducing the notion of order among Clocks. In the same way,
we have a notion of order among the nodes in each clock, since events that
happened earlier will always be descendants of events that happened later.
Additionally, we have introduced a way to merge Merkle-Clocks according
to how they compare. The resulting Clock always includes the causality
information from both Clocks. This eventually means that the causality in-
formation stored in Merkle-Clocks in every replica will converge to the same
Merkle-Clock after merging.

The causal order provided by Merkle-Clocks is embedded when building
Merkle-DAGs with similar rules and usually overlooked as something very
intuitive. It is important, however, to formalize how we define order between
Merkle-Clocks and to prove that the causality information is maintained
when they are synced and merged. This is the subject of the next section
and will be an important property for Merkle-CRDTs.

32Root nodes of the DAG are nodes without any parents. The Merkle Clock may have
several roots at a given time.

33In the example we assume, without loss of generality, that we start with DAGs con-
taining a single root instead of several.

12



4.2 Merkle-Clocks as a convergent, replicated data type

This section formalizes the definition of Merkle-Clocks and their represen-
tation as Merkle-Clock DAGs. We will show that Merkle-Clock DAGs can
be seen as a Growing-Set (G-Set) CRDT and therefore converge in multiple
replicas34.

Let S be the set of all system events:

Definition 3. (Merkle-Clock Node). A Merkle-Clock Node nα is a triple:

(α, eα, Cα)

which represents an event eα ∈ S , with α being the node CID and Cα being
the CID-set of the direct desdendants of nα.

Definition 4. (Merkle-Clock DAG). A Merkle-Clock DAG is a pair:

〈N,≤〉

where N is a set of immutable DAG-nodes and a partial order ≤ on N,
defined as follows:

nα, nβ ∈ N : nα < nβ ⇔ nα is a descendant of nβ

In other words, nα < nβ if there is a path of linked nodes which goes
from nβ to nα.

In order to maintain this relationship, the Merkle-Clock DAG must be
built with the following Implementation Rule:

IR. Every new event in the system must be represented as a new root node
to the existing Merkle-Clock DAG(s). In particular, the C set must contain
the CIDs of the previous roots.

Definition 5. (Merkle-Clock). A Merkle-Clock (M ) is a function which
given an event eα ∈ S returns a node from the Merkle-Clock DAG N:

M : S → N

Remark. A Merkle-Clock satisfies the Strong Clock condition [18]. We see
that every node represents a later event than that of its children:

∀(β, eβ, Cβ) ∈ N : ∀α ∈ Cβ : eα → eβ

34It is usually not mentioned that other common logical clocks are also CRDTs and
were invented even before the term was coined. In particular, the operation of a vector
clock is very similar to that of a state-based G-Counter CRDT and it is, in fact, just that:
a grow-only counter that represents causality.

13



Since every event is the root of a (sub)DAG built using the implemen-
tation rule, we can immediately see that earlier Merkle-Clock values are
descendants of the later ones:

M (eα) < M (eβ)⇔ eα → eβ

We can now define a join-semilattice of Merkle-Clocks DAGs as a pair:

〈J,⊆J〉

where J is a set of Merkle-Clocks DAGs and ⊆J a partial order over that set
defined as follows. Given M,N ∈ J:

M ⊂J N⇔ ∀m ∈M, ∃n ∈ N | m < n⇔M ⊂ N

Note that m < n, means that m is a descendant of n and thus must
belong to the same DAG, then ⊂J simply means that M is a subset of N.

This allows us to define the Least-Upper-Bound of two Merkle-Clocks
DAGs (tJ) as the regular union of the sets:

M tJ N = M ∪ N

Unsurprisingly, the Merkle-Clock representation corresponds in fact to a
Grow-Only-Set (G-Set) in the state-based CRDT form [27]. The elements of
the set are immutable, cryptographically linked and represent the events in
the system. When the DAGs are disjoint, the resulting DAG will include the
roots from both N and M. That is the equivalent of having several events
without causal relationship. Causality information about DAG-merge events
can be optionally included after the union of the DAGs by creating a new
unique root following the implementation rule.

In the next section we will see how the properties of Merkle-DAGs allow
syncing Merkle-Clocks in a more efficient manner than regular state-based
G-Sets.

4.3 The Merkle in the Clocks: properties of Merkle-Clocks

We have so far defined a way to encode causality information per replica
and ensured that two replicas can merge their Merkle-Clocks. Now we
will see how the properties of Merkle-DAGs allow the use of a pull (or
fetch) approach, rather than a push approach which, together with content-
addressing, enables efficient clock sync between replicas and overcomes the
effect of network partitions or contingencies. The steps to Merkle-Clock
synchronisation between replicas are given below.

1. Broadcasting the Merkle-Clock requires broadcasting only the current
root CID. The whole Clock is unambiguously identified by the CID of
its root and its full DAG can be walked down from it as needed.

14



2. The immutable nature of a Merkle-DAG allows every other replica
to perform quick comparisons and pull/fetch only those nodes that it
does not already have.

3. Merkle-DAG nodes are self-verified, through their CID, and, therefore,
immune to corruption and tampering. Hence, they can be fetched
(pulled) from any source willing to provide them, trusted or not.

4. Identical nodes are de-duplicated by design: there can only be one
unique representation for every event.

In practice, every replica just fetches the delta causal histories from other
replicas without the need to build those deltas explicitly anywhere in the
system. A completely new replica with no previous history will fetch the
full history automatically35.

Merkle-Clocks can replace version clocks and other logical clocks that
are usually part of CRDTs. This comes with some considerations:

• By using Merkle-Clocks we can decouple the causality information from
the number of replicas, which is a common limitation in version clocks.
This makes it possible to reduce the size of the messages when imple-
menting CRDTs and, most interestingly, solves the problem of keeping
clocks working when replicas randomly join and leave the system.

• On the downside, the causal information grows with every event and
replicas store potentially large histories even if the event information
is consolidated into smaller objects.

• Keeping the whole causal history enables new replicas to sync events
from scratch out-of-the-box, without having to explicitly send system
snapshots to newcomers. However, that syncing may be slow if the
history is very large. We will explore, along with Merkle-CRDTs,
potential optimizations in this regard.

A significant advantage of Merkle-Clocks, over traditional version clocks
is that they can also deal with network eventualities without much trouble:

• Dropped messages may prevent informing other replicas about new
roots. But since every Merkle-Clock DAG is superseeded by future
DAGs and every download fetches all the missing parts of a DAG,
network partitions and replica downtimes do not have an effect on the
overall system and will begin to heal automatically once the issues are
resolved.

35This is precisely how peers participating in cryptocurrencies sync their ledgers.

15



• Messages arriving unordered pose no problem for the same reasons.
The missing DAG will be fetched and processed in order.

• Duplicated messages are just ignored by replicas as they are already
incorporated into their Merkle-Clocks.

• Corrupt messsages come in two fashions: a) if the message broadcast-
ing a new root is corrupted, then it will be a hash corresponding to a
non-existent DAG that cannot be fetched by the DAG-Syncer and will
be eventually ignored; b) if a DAG node is corrupted on download, the
DAG-Syncer component (or the application) can discard it if its CID
does not match the downloaded content.

As we showed in the previous section, Merkle-Clocks represent a strict
partial order of events. Not all events in the system can be compared and
ordered. For example, when having multiple heads, the Merkle-Clock cannot
say which of the events happened first.

A total order can be useful [18] and could be obtained, for example, by
considering concurrent events to be equal. Similarly, a strict total order
could be built by sorting concurrent events by the CID of their nodes or by
any other arbitrary user-defined strategy based on additional information
attached to the clock nodes. Any such approach would qualify as data-layer
conflict resolution.

5 Merkle-CRDTs: Merkle-Clocks with payload

Definition 6. (Merkle-CRDT). A Merkle-CRDT is a Merkle-Clock whose
nodes carry an arbitrary CRDT payload.

Merkle-CRDTs keep all the properties seen before for Merkle-Clocks.
However, for the payloads to converge, they need to be convergent data types
(CRDTs) themselves. The advantage is that Merkle-Clocks already embed
ordering and causality information which would otherwise need to travel
embedded in the CRDT objects36 or be provided by a reliable messaging
layer.

Thus, the implementation of a Merkle-CRDT node looks like:

(α,P , C)

with α being the content identifier, P an opaque data object with CRDT
properties and C the set of children identifiers37.

36Usually in the form of other logical clocks.
37In the previous section we defined Merkle-Clock nodes as a triple (α, e, C). We included

the event e to facilitate the definition of node ordering but it is easy to see that the causality
information is directly embedded in the Clock: the existence of a node is the event itself.

16



5.1 Per-object Causal Consistency and Gap Detection

The directed-link nature of Merkle-CRDTs, which allows traversing the full
causal history of the system in the order of events, provides all the neces-
sary properties to ensure per-object causal consistency and gap detection by
design without modifying our system model.

This means that Merkle-CRDTs are very well suited to carry operation-
based CRDTs as they can ensure that no operation is lost or applied in
disorder38.

To facilitate the task of processing CRDT payloads in Merkle-CRDTs,
in the next section we present a general and simple (non-optimized) anti-
entropy algorithm that can be used to obtain per-object causal consistency
for any CRDT embedded object.

5.2 General anti-entropy algorithm for Merkle-CRDTs

Definition 7. (General anti-entropy algorithm for Merkle-CRDTs).
Let RA and RB be two replicas using Merkle-CRDTs with Mα and Mθ

respectively as their current Merkle-CRDT DAG.

1. RB issues a new payload by creating a new DAG node (β, P, {θ}) and
adding it as the new root to its Merkle-CRDT, which becomes Mβ.

2. RB broadcasts β to the rest of replicas in the system.

3. RA receives the broadcast of β and retrieves the full Mβ. It does
this by starting from the root β and walking down the DAG using
the DAG-Syncer component to fetch all the nodes that are not in
Mα, while collecting their CIDs in a CID-Set D. Given the inherent
properties of DAGs, for any CID already in Mα the whole sub-DAG
can be skipped.

4. If D is empty, no further action is required. RA must have already
processed all the payloads in Mβ. This means that Mβ ⊆Mα.

5. If D is not empty, we sort the CIDs in D using the order provided
by the Merkle-Clock39. We can skip the ordering if causal delivery
is not a requirement in our system. The amount of items in D will
depend on the amount of concurrency in the system and how long the
two Merkle-CRDTs have been allowed to diverge, but should be small
under normal circumstances.

38To re-iterate, the Merkle-Clock provides a strict partial order of events. In this case,
two non-concurrent operations applied to an object will be sortable by the clock.

39To be precise, we are extending the order to a total order by considering incomparable
nodes to be “equal”.

17



6. RA processes the payloads associated with the nodes corresponding to
the CIDs in D, from the lowest to the highest.

7. If α ∈ D, then Mα ⊆ Mβ and Mβ becomes the new local Merkle-
CRDT in RA.

8. else, Mα 6⊂Mβ and Mβ 6⊂Mα. RA keeps both nodes as roots.

5.3 Operation-based Merkle-CDRTs

Definition 8. Operation-based Merkle-CRDTs are those in which nodes
embed an operation-based CRDT payload.

Operation-based Merkle-CRDTs are the most natural application of
Merkle-CRDTs. Operations are easy to define, as they just need commu-
tativity but, in their traditional form, require a reliable messaging layer [4]
or complex workarounds, like additional causality payloads, buffering and
retry mechanisms.

Merkle-DAGs provide all the properties of a messaging layer where mes-
sages are always delivered in order, verified and never repeated nor dropped.
Thus, Merkle-CRDTs enable operation-based CRDTs in contexts where
they could not be easily used before.

As we saw, thanks to the Merkle-DAG in which they are embedded, each
replica only needs the missing parts of the DAG and these can be fetched
once the root is known. This includes new replicas joining the system,
which will be able to fetch and apply all operations. We do not need to
keep knowledge of the full replica set and place the responsibility of efficient
broadcast in the Broadcaster component.

It is worth noting that adding Lamport timestamps to each operation
makes them usable to implement different replicated data types as proposed
by the OpSets40 specifications [17].

5.4 State-based Merkle-CRDTs

Definition 9. State-based Merkle-CRDTs are those in which nodes embed
a state-based CRDT payload.

Embedding full states in each Merkle-CRDT node is counter-intuitive
since state-based CRDTs already provide per-object causal consistency and
can cope with unreliable message layers by design.

40OpSets introduce a replicated data type framework based on operations which are
unique and stored as an ordered set based on their Lamport timestamps. The state is
the interpretation of the full set. When operations arrive out-of-order, the state needs to
be recomputed. OpSets bring some strengths at the cost of strong eventual consistency
and space —all operations need to be stored in order to potentially re-compute the full
state. Some OpSet types may benefit from a Merkle-CRDT transport which ensures causal
delivery, potentially unlocking optimizations.

18



Moreover, although the final state would result from the merge of all
the states in the Merkle-CRDT nodes, the DAG-Syncer component would
still need to store those states, something prohibitive when working with
large state objects. That said, Merkle-CRDTs remove the need to attach
causality metadata and detach it from the number of replicas, which might
be of interest for state-based CRDTs with very small states in comparison
to the number of replicas.

A more interesting approach is that of δ-CRDTs [3] which, instead
of broadcasting full states, are able to send smaller sections (deltas). δ-
mutations, as these objects are called, can be merged downstream just like
any full state would be, without the need for changing the semantics of the
union operation. It follows that multiple deltas can be merged to form what
is known as δ-groups and increase the efficiency of the broadcast payloads.
As pointed out in [3], “a full state can be seen as a special (extreme) of a
delta-group”.

In the vanilla form of δ-CRDTs, however, consistency is delayed ad-
infinitum when a message is lost and the per-object causal consistency prop-
erty of state-based CRDTs is lost. These issues can be addressed with an
additional anti-entropy algorithm that groups, sorts, tracks delivery and re-
sends missing deltas, as presented in [3], but in the case of δ-state-Merkle-
CRDTs, the anti-entropy algorithm and any causal information attached to
the original objects would not be necessary. In essence, this approach brings
δ-state Merkle-CRDTs closer to their operation-based counterpart.

5.5 Limitations of Merkle-CRDTs

We have so far focused in explaining the different qualities that Merkle-
CRDTs provide to traditional CRDT approaches, but we must also highlight
what intrinsic and practical limitations they bring.

Ever-growing DAG-Size: The most obvious consequence of Merkle-
CRDTs is that, while CRDTs normally merge, apply, consolidate and dis-
card broadcast objects, Merkle-CRDTs build a permanent Merkle-DAG
which must be stored and is ever-growing. As we have seen, this provides a
number of advantageous properties, but also comes with some implications:

• The size of the DAG might grow larger than acceptable. The rate of
growth will depend on the number of the events and the size of the
payloads. This is very similar to how blockhains grow to large sizes
in time41. This is especially problematic when the actual state might
be much smaller. In some cases, it might be possible to express the

41Bitcoin chain uses more than 220GB and Ethereum (Parity) more than 165GB as of
this writing.

19



state as a compact of the result of all the Merkle-CRDT operations,
but this brings us to the next point.

• If replicas store the Merkle-DAG only, knowing that the full state can
be rebuilt from it (and thus saving that space), starting replicas with
very large Merkle-DAGs might be especially slow since they will need
to reprocess the full DAG, even when available locally. If not, there
will be redundant information stored in both the resulting state and
in the Merkle-DAG.

• Merkle-CRDT syncs from scratch are possible and natural to the sys-
tem when a new replica joins. However, Merkle-DAGs are not only
ever-growing, but also tend to be deep and thin42. A new replica will
learn the root CID from a broadcast operation and will need to re-
solve the full DAG from it. Because of the thinness, it will not be
possible to fetch several branches in parallel. Cold-syncs may take sig-
nificantly longer than it would take to ship a snapshot, thus rendering
this embedded property of Merkle-DAGs of little value.

Very large DAGs and slow syncs are not a problem in some scenarios
and can be seen as an acceptable trade-off, but do highlight the need of
exploring garbage collection and DAG compaction mechanisms.

Merkle-Clock sorting: Merging two Merkle-Clocks requires comparing
them to see if they are included in one another and finding differences. This
may be a costly operation if DAGs have diverged significantly (or long ago).

DAG-Syncer latency: Replicas rely on a DAG-Syncer component to
fetch and provide nodes from and to the messaging layer. To avoid keeping
a static list of replicas participating in the system, peer-to-peer applica-
tions like Bittorrent and IPFS use a Distributed Hash Table (DHT)43. The
DHT is used to collaboratively store and locate small pieces of information
(discovery) and to discover peers and route other peers to them (routing).
DHTs are massively scalable but introduce some overhead44 that may make
fetching DAG-nodes slower than receiving them directly from the issuer.

42The Merkle-DAGs will be thin in the absence of many concurrent events, or have a
high branching factor otherwise. In both cases, branches are consolidated every time a
new event is issued from a replica, thus creating thin waists in the DAG.

43The Wikipedia entry provides a good overview of how they work, out of the scope of
this paper: https://en.wikipedia.org/wiki/Distributed_hash_table.

44This is particularly relevant when using an IPFS node connected to the global IPFS
network, where the DHT will not just store the data associated to the Merkle-CRDT nor
only be used by the replicas. It is possible, nevertheless, to use private IPFS networks
(with a dedicated DHT) for the task.

20



The practical impact of these limitations depends on the requirements
of the application. In particular, when thinking about adopting Merkle-
CRDTs, users should consider whether Merkle-CRDTs are the best ap-
proach in terms of:

• Node count vs. state-size
• Time to cold-sync
• Update propagation latency
• Expected total number of replicas
• Expected replica-set modifications (joins and departures)
• Expected volume of concurrent events

In the following section we explore some optimizations which can address
part of the problems seen here, but may also impose additional constraints.

5.6 Optimizing Merkle-CRDTs

The previous section listed some of the issues we must account for when using
Merkle-CRDTs, especially in the vanilla, non-optimized version in which
we have presented them. We will now describe potential optimizations to
address some of those problems.

Delayed DAG nodes: In scenarios where replicas issue frequent updates,
we can group multiple payloads before issuing a single node containing all of
them. It is clear that this approach will bring some benefits, which however,
comes together with tradeoffs: updates are not immediately sent out and
will therefore, take longer to propagate.

Quick Merkle-DAG inclusion check: Merging the local replica DAGs
with a remote one requires checking if one DAG includes the other. It is
possible but inefficient to do so by walking down the first DAG looking for
a node CID that matches the root of the second. Storing the CIDs of the
local DAG in a key-value store that can quickly check whether a CID is part
of the local DAG or not makes things significantly easier45. When walking
the remote DAG to check for inclusion of the local DAG, the CIDs of the
children of any of its nodes can be checked to see if they are part of the
local DAG in which case their branches can be conveniently pruned. This
implies, however, that the implementation must be aware and have access to
the local storage system for nodes. The DAG-Syncer, as currently defined,
cannot differentiate between nodes available locally or remotely. Bloom
filters, caches and some data structures can also improve efficiency, but they
are usually part of the chosen storage backend.

45Fast key-value stores, such as in-memory ones, will normally pay a high memory
footprint penalty, while disk-backed ones will be slower.

21



A similar effect can be achieved by embedding version vectors in the
payloads, as long as the application can tolerate the constraints they impose.
Comparing version vectors between payloads is an inclusion check without
the need to perform a DAG-walking.

Broadcast payload adjustments: Our standard approach reduces the
size of the broadcasts by including only the CID of the new roots. Publishing
mechanisms are complex enough and always benefit from smaller payloads.

However in some systems it may be beneficial46 to send new Merkle-DAG
nodes directly as broadcast payloads. Replicas that are offline or dropped
messages will recover when they receive a future update and complete their
DAGs, so this has no effects in that regard. Broadcasting the payloads
(assuming they are small enough) will likely reduce the latency of the prop-
agation of changes in the system.

Reducing the Merkle-DAG node size: We can attempt to reduce the
size of the payloads as much as possible by compressing and removing re-
dundant information not required by the CRDT itself. For example, instead
of signing the CRDT payloads to ensure that they come from a trusted
replica, we can sign the broadcast messages, thus leaving signatures out of
the Merkle-DAG.

Another option is to make the payload (or parts of it) CIDs to reference
the actual contents. If the payloads are big, this will greatly reduce the size
of the Merkle-DAG and may increase the efficiency of the DAG fetching.
This is especially relevant when some of the payloads are identical and can
be de-duplicated.

Additional pointers in nodes: One of the ways to work around the
thin-DAG problem is to regularly introduce references to deeper parts of
the DAG when issuing new nodes. This is basically adding extra children to
nodes. It allows more parallelism when fetching missing parts of the DAG
by being able to jump to other sections of it. This can result in a much
faster traversal. The actual number of extra links and their destination will
depend on the needs of the application.

The above recommendations should be considered in any Merkle-CRDT
implementation as they may provide significant advantages over the unopti-
mized version described previously. We leave the topics of DAG compaction
and garbage collection for future work, although we intuitively note that dis-
carding parts of the Merkle-DAG is not possible without knowing if every
replica is aware of them. This, in turn, requires knowing the replica-set47,
a system constraint that we did not have before.

46Specially those with a rather small replica set and fast broadcast.
47Or agreeing, using some form of consensus or authority.

22



6 Related work in the IPFS Ecosystem

Merkle-CRDTs are very intuitive, even if they were not formalized before,
and rely on well-known and widely used properties of Merkle-DAGs. Several
projects in the IPFS ecosystem already use them48, all embedding operation-
based CRDTs in Merkle-DAGs:

• ipfs-log49 is, to our knowledge, the first existing instance of a Merkle-
CRDT as described here. It implements an operation-based, append-
only log CRDT (similar to a grow-only set).

• ipfs-hyperlog50 is utility to build and replicate Merkle DAGs.

• Orbit DB51 is a distributed, peer-to-peer database. It uses ipfs-log

and other CRDTs for different data models. It is used to build Orbit52,
a distributed, serverless chat application.

• Tevere53 is an operation-based Merkle-CRDT key-value store.

• peer-crdt54 and peer-crdt-ipfs55 provide a generalistic operation
Merkle-CRDT implementations of several CRDTs: counters, sets, ar-
rays, registers and text (as well as composable CRDTs).

• versidag56 is a proposed linked log with conflict resolution to store
version information, similar to ipfs-log.

• PeerPad57 is a real-time collaborative text editor based on peer-crdt

and δ-CRDTs.

• Textile.photos58 is a mobile, decentralized digital wallet for photos.
Textile Threads (v1) [14] allow a group of users to share photos without
a central database and are based on Merkle-CRDTs.

• go-ds-crdt59 is a key-value distributed datastore implementation in
Go using δ-state Merkle-CRDTs. It is used by IPFS Cluster60.

48The dynamic data and capabilities working group has started many discussions on
the topic: https://github.com/ipfs/dynamic-data-and-capabilities.

49https://github.com/orbitdb/ipfs-log
50https://github.com/noffle/ipfs-hyperlog
51https://github.com/orbitdb/orbit-db
52https://github.com/orbitdb/orbit
53https://github.com/ipfs-shipyard/tevere
54https://github.com/ipfs-shipyard/peer-crdt
55https://github.com/ipfs-shipyard/peer-crdt-ipfs
56https://github.com/ipfs/dynamic-data-and-capabilities/issues/50
57https://github.com/ipfs-shipyard/peer-pad
58https://www.textile.photos/
59https://github.com/ipfs/go-ds-crdt
60https://cluster.ipfs.io

23



7 Conclusion

In this paper we approached Merkle-DAGs as causality-encoding structures
with self-verification and efficient syncing properties. This led us to intro-
duce the concept of Merkle-Clock, demonstrating that they can be described
as a state-based CRDT which, announced with a Broadcaster component
and fetched with a DAG-Syncer facility, converges in all replicas.

We then presented Merkle-CRDTs as Merkle-Clocks with CRDT pay-
loads, a technique used in the past by multiple projects in the IPFS ecosys-
tem. We showed how Merkle-CRDTs work with almost no messaging layer
guarantees and no constraints on the replica-set, which can be dynamic and
unknown, while providing per-object causal consistency.

As we saw, Merkle-CRDTs can carry any type of CRDT payload, but
their properties make them specially interesting for operation-based and δ-
CRDTs.

We finished by studying the limitations of Merkle-CRDTs and by propos-
ing a number of optimizations over the original description, leaving DAG
compaction and garbage collection strategies as areas for future work.

Merkle-CRDTs are a marriage between traditional blockchains, which
need consensus to converge, and CRDTs, which converge by design, and
thus inherit positive and negative aspects from both worlds. With this work,
we hope to have set a good foundation for future research on the topic.

8 Acknowledgments

The authors are grateful to Adrian Lanzafame, Sander Pick, Carson Farmer,
David Dias, Rohit Grover, David A. Roberts, Victor Grishchenko, Stephen
Whitmore, Gonçalo Pestana, André Cruz and Alexei Baboulevitch whose
comments, previous work and suggestions have inspired and improved much
of the content in this paper.

Special thanks go as well to the Protocol Labs Research team and Jorge
Soares in particular, for all the help getting this paper into its final form.

24



References

[1] José Bacelar Almeida, Paulo Sérgio Almeida, and Carlos Baquero
Moreno. Bounded version vectors. In International Conference on
Distributed Computing - ICDCS, volume 3274, pages 102–116, Tokyo,
Japan, March 2004. Springer, Springer.

[2] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Interval tree
clocks. In Proceedings of the 12th International Conference on Princi-
ples of Distributed Systems, OPODIS ’08, pages 259–274, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[3] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient state-
based CRDTs by delta-mutation. CoRR, abs/1410.2803, 2014.

[4] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making
operation-based CRDTs operation-based. In Proceedings of the First
Workshop on Principles and Practice of Eventual Consistency, PaPEC
’14, pages 7:1–7:2, New York, NY, USA, 2014. ACM.

[5] Carlos Baquero and Nuno Preguiça. Why logical clocks are easy. 14,
April 2016.

[6] Petr Baudis. Current concepts in version control systems. CoRR,
abs/1405.3496, 2014.

[7] Juan Benet. IPFS - content addressed, versioned, P2P file system (draft
3), 2014.

[8] Eric A. Brewer. Towards robust distributed systems, 2000.

[9] Russell Brown, Sean Cribbs, Christopher Meiklejohn, and Sam Elliott.
Riak dt map: A composable, convergent replicated dictionary. In Pro-
ceedings of the First Workshop on Principles and Practice of Eventual
Consistency, PaPEC ’14, pages 1:1–1:1, New York, NY, USA, 2014.
ACM.

[10] Russell Brown, Zeeshan Lakhani, and Paul Place. Big(ger) sets: de-
composed delta CRDT sets in riak. CoRR, abs/1605.06424, 2016.

[11] Scott Chacon and Ben Straub. Pro Git. Berkely, CA, USA, 4th edition,
2018.

[12] Anton Churyumov. Byteball: A decentralized system for storage and
transfer of value, 2016.

25



[13] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store, 2007.

[14] Carson Farmer and Sander Pick. Textile Threads whitepaper. . . just
kidding. . . a deeper look at the tech behind textile’s Threads protocol,
October 2018.

[15] C. J. Fidge. Timestamps in message-passing systems that preserve the
partial ordering. Proceedings of the 11th Australian Computer Science
Conference, 10(1):56–66, 1988.

[16] Brent ByungHoon Kang, Robert Wilensky, and John Kubiatowicz. The
hash history approach for reconciling mutual inconsistency. In Proceed-
ings of the 23rd International Conference on Distributed Computing
Systems, ICDCS ’03, pages 670–, Washington, DC, USA, 2003. IEEE
Computer Society.

[17] Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and
Alastair R. Beresford. Opsets: Sequential specifications for replicated
datatypes (extended version). CoRR, abs/1805.04263, 2018.

[18] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[19] Tobias Landes. Tree clocks: An efficient and entirely dynamic log-
ical time system. In Proceedings of the 25th IASTED International
Multi-Conference: Parallel and Distributed Computing and Networks,
PDCN’07, pages 375–380, Anaheim, CA, USA, 2007. ACTA Press.

[20] Ralph C. Merkle. A digital signature based on a conventional encryp-
tion function. In Carl Pomerance, editor, Advances in Cryptology —
CRYPTO ’87, pages 369–378, Berlin, Heidelberg, 1988. Springer Berlin
Heidelberg.

[21] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
2009.

[22] Geroge Neville-Neil. Time is an illusion. ACM Queue, 13(9), 2016.

[23] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker,
E. Walton, J. M. Chow, D. Edwards, S. Kiser, and C. Kline. Detection
of mutual inconsistency in distributed systems. IEEE Trans. Softw.
Eng., 9(3):240–247, May 1983.

[24] Serguei Popov. The Tangle, 2016.

26



[25] Nuno M. Preguiça, Carlos Baquero, Paulo Sérgio Almeida, Victor
Fonte, and Ricardo Gonçalves. Dotted version vectors: Logical clocks
for optimistic replication. CoRR, abs/1011.5808, 2010.

[26] Nuno M. Preguiça, Carlos Baquero, and Marc Shapiro. Conflict-free
replicated data types (CRDTs). CoRR, abs/1805.06358, 2018.

[27] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A
comprehensive study of Convergent and Commutative Replicated Data
Types. Research Report RR-7506, Inria – Centre Paris-Rocquencourt
; INRIA, January 2011.

[28] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44,
January 2009.

27


